Sorafenib-incoporated nanoparticles were prepared using a block copolymer that is composed of dextran and poly(DL-lactide-co-glycolide) [DexbLG] for antitumor drug delivery. Sorafenib-incorporated nanoparticles were prepared by a nanoprecipitation-dialysis method. Sorafenib-incorporated DexbLG nanoparticles were uniformly distributed in an aqueous solution regardless of the content of sorafenib. Transmission electron microscopy of the sorafenib-incorporated DexbLG nanoparticles revealed a spherical shape with a diameter < 300 nm. Sorafenib-incorporated DexbLG nanoparticles at a polymer/drug weight ratio of 40:5 showed a relatively uniform size and morphology. Higher initial drug feeding was associated with increased drug content in nanoparticles and in nanoparticle size. A drug release study revealed a decreased drug release rate with increasing drug content. In an in vitro anti-proliferation assay using human cholangiocarcinoma cells, sorafenib-incorporated DexbLG nanoparticles showed a similar antitumor activity as sorafenib. Sorafenib-incorporated DexbLG nanoparticles are promising candidates as vehicles for antitumor drug targeting.
The preparation of poly(DL-lactide-co-glycolide) (PLGA) nanoparticles was performed by a dialysis method without surfactant or emulsifiers. The size of the PLGA nanoparticles prepared from dimethylacetamide (DMAc) as an initial solvent was smaller than that from acetone. The sizes of the PLGA nanoparticles from DMAc and acetone were 200.4 Ϯ 133.0 and 642.3 Ϯ 131.1 nm, respectively. The effects of the initial solvent selected to dissolve the copolymer and the lactide:glycolide ratio were investigated. The PLGA nanoparticles were spherical as revealed by the results of scanning electron microscopy and transmission electron microscopy observations. From these results it was shown that PLGA nanoparticles could be formed by the dialysis method without surfactant. The drug-loading contents and efficiency were also dependent on the lactide:glycolide ratio and initial feeding amount of the drug. A higher lactide ratio resulted in higher drug loading and higher loading efficiency. However, a higher initial feeding amount of the drug resulted in higher drug loading and lower loading efficiency. Clonazepam was released for at least 2 days and the release rate was slower with a higher lactide:glycolide ratio and a larger amount of drug-loading nanoparticles than that with a lower lactide:glycolide ratio and a smaller amount of drug-loading nanoparticles.
Various cryoprotectants were tested to reconstitute the surfactant-free nanoparticles of poly(DL-lactide-co-glycolide) (PLGA). When 2.0% (w/v) of sucrose, trehalose and lactose were used, nanoparticles were completely reconstituted into aqueous solution and particle size was not significantly changed. Above 1.0% (w/v) of sucrose, trehalose and lactose, nanoparticles are well reconstituted whereas it was precipitated with 1.0% (w/v) of mannitol. Drug-encapsulated surfactant-free nanoparticles were quite reconstituted when 2.0% (w/v) of sucrose, trehalose and lactose. Drug release kinetics of nanoparticles was not significantly changed by cryoprotectants.
Hederacolchiside A1 was used to progressively permeabilize the membrane of human melanoma MEL-5 cells. Holes formation was followed by Scanning Electron Microscopy and interaction of the saponin with cholesterol and phospholipids by TOF-SIMS. 2D-LC-MS/MS and 2D-SDS-PAGE show that the release of soluble proteins into serum-free culture media increases with time. This can lead to a new rapid and efficient strategy to analyze the cytosolic subproteome and it opens the door to get information from the cytosolic compartment for clinical proteomic studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.