Rice (Oryza sativa L.) is a tropical crop, but is also grown in temperate regions in late spring to summer. Cold temperature damage is a common problem for early‐planted rice in temperate countries. Physiological responses to chilling, including antioxidative enzyme activity, were investigated in rice to identify mechanisms of chilling tolerance. Plants were exposed to 15°C (cold‐acclimated) or 25°C (nonacclimated) for 3 d, under 250 μmol m−2 s−1 photosynthetically active radiation (PAR). All plants were then exposed to chilling temperature at 5°C for 3 d and allowed to recover at 25°C for 5 d. Leaf fresh weight, relative water content, lipid peroxidation, chlorophyll a fluorescence, and quantum yield showed that cold‐acclimated leaves were less affected by chilling compared to nonacclimated leaves. Cold‐acclimated leaves also recovered faster from chilling injury than nonacclimated leaves. We analyzed the isozyme profile and activity of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR). Significant induction of expression and activity of antioxidative enzymes CAT and APX in leaves and SOD, CAT, APX, and GR in roots were observed. We deduced that CAT and APX are most important for cold acclimation and chilling tolerance. Increased activity of antioxidants in roots is more important for cold tolerance than increased activity in shoots. Chilling‐sensitive rice plants can be made tolerant by cold acclimation.
Inhibition of "Calypso" cucumber seedling growth by rye allelochemicals, 2(3H)-benzoxazolinone BOA and 2,4-dihydroxy-1,4(2H)-benzoxazin-3-one DIBOA, was studied by analyzing the growth of seedling tissues and organs. Light and electron microscopy of seedling root cells were also carried out to investigate the mechanism(s) of root growth inhibition and mode of action of these compounds. BOA inhibited root elongation and reduced the number of cucumber lateral roots by 77 and 100% at 0.1 and 0.43 mg BOA/ml deionized (DI) water, respectively. DIBOA also inhibited root growth, but did not affect the number of lateral roots. BOA increased size of cucumber cortical root cells fivefold, but DIBOA had no effect. Both compounds reduced the regeneration of root cap cells and increased the width of cortical cells resulting in increased root diameter. BOA and DIBOA caused increased cytoplasmic vacuolation, reduced ribosome density and dictyosomes, reduced number of mitochondria, and reduced lipid catabolism. Starch granules in amyloplasts of seedling roots treated with BOA and DIBOA were also greatly reduced compared to the control. Changes in cellular ultrastructure indicated that BOA and DIBOA reduced root growth by disrupting lipid metabolism, reducing protein synthesis, and reducing transport or secretory capabilities.
A Cyperus difformis L accession from Chonnam province, Korea was tested for resistance to the sulfonylurea herbicide, imazosulfuron. The accession was confirmed to be resistant (R) and was cross-resistant to other sulfonylurea herbicides, bensulfuron-methyl, cyclosulfamuron and pyrazosulfuron-ethyl, the pyrimidinyl thiobenzoate herbicide, bispyribac-sodium, and the imidazolinone herbicide imazapyr, but not to imazaquin. Multiple resistance was tested using twelve herbicides with target sites other than acetolactate synthase (ALS). The R biotype could be controlled by other herbicides with different modes of action such as butachlor, carfentrazone-ethyl, clomeprop, dithiopyr, esprocarb, mefenacet, oxadiazon, pretilachlor, pyrazolate and thiobencarb, applied to soil at recommended rates. Several sulfonylurea herbicide-based mixtures can control both the R and S biotypes of C difformis, except sulfonylurea plus dimepiperate, molinate or pyriftalid, and pyrazolate plus butachlor. Although mixtures of sulfonylurea herbicides might be more effective, they should be avoided and used only in special cases. In terms of in vitro ALS activity, the R biotype was 1139-, 3583-, 1482-, 416-, 5- and 9-fold more resistant to bensulfuron-methyl, cyclosulfamuron, imazosulfuron, pyrazosulfuron-ethyl, bispyribac-sodium and imazapyr, respectively, than the S biotype. The in vivo ALS activity of the R biotype was also less affected by the sulfonylurea herbicides, imazosulfuron and pyrazosulfuron-ethyl, than the S biotype. Results of in vitro and in vivo ALS assays indicated that the resistance mechanism of C difformis to ALS inhibitor herbicides was primarily due to an alteration in the target enzyme, ALS. Greenhouse experiments showed delayed flowering and reduced seed production of the R biotype, which could possibly result in reduced fitness. This unusual observation needs to be confirmed in field situations.
The objectives of this study were to investigate the levels of phytotoxicity of rice varieties to HPPD (4-hydroxy phenylpyruvate dioxygenase)-inhibiting herbicides known for their efficiency to control the sulfonylureas-resistant weed species:mestrione, benzobicyclone, and tefuryltrione. The twenty-six rice varieties (8-Japonica × Indica-type varieties and 18-Japonica-type varieties) were grown for 25 days on seedling trays and then transplanted to paddy rice fields followed by herbicide treatment i.e. standard and double doses of there respective herbicides at 5, 10, and 15 days after transplanting. Although mestrione, benzobicyclone and tefuryltrione are all HPPD-inhibiting herbicides, the phytotoxicity symptoms of the different rice varieties based on the timing of application and doses of the herbicides were significantly different. The Japonica × Indica-type varieties showed much more phytotoxicity symptoms than Japonicatype varieties in all applied herbicides. Increasing herbicidal doses of mesotrione, and an earlier application of and increasing herbicidal doses of benzobicyclon caused severe phytotoxicity symptoms. On the other hand, phytotoxicity due to tefuryltrione did not exhibit significant differences between rice varieties in either the timing of application or dose of the herbicide. Regardless of timing of application and dose of the herbicides, Hangangchalbyeo-1, Hyangmibyeo-1 and high-yield rice varieties such as Namcheonbyeo, Dasanbyeo, Areumbyeo, and Hanareumbyeo, which belong to the Japonica × Indica-type varieties, showed 5 to 8 levels of phytotoxicity symptoms including albinism, browning, detached leaf, and necrosis to mesotrione and benzobicyclon whereas only 1 to 3 levels of phytotoxicity symptoms (chlorosis, albinism, and browning) were seen with to tefuryltrione application. The Japonica-type varieties exhibited only slight 한잡초지 32(3)호. 2012년
Nine Monochoria vaginalis Pres1 accessions from Chonnam province, Korea were tested for resistance to the sulfonylurea herbicide, imazosulfuron, in whole-plant response bioassay. All accessions were confirmed resistant (R) to imazosulfuron. The GR50 (imazosulfuron concentration that reduced shoot dry weight by 50%) values of R accessions were 1112-3172 (accession #9) times higher than that of the standard susceptible (S) accession. Accession #9 exhibited cross-resistance to other sulfonylurea herbicides, bensulfuron-methyl, cyclosulfamuron and pyrazosulfuron-ethyl, but not to the imidazolinone herbicides, imazapyr and imazaquin. The R biotype could be controlled by other herbicides with different modes of action, such as mefenacet and pyrazolate, applied to soil at recommended rates. Foliar-applied herbicides, 2,4-D and bentazone, also controlled both the R and S biotypes. Sulfonylurea-based mixtures, except ethoxysulfuron plus fentrazamide, did not control resistant M. vaginalis. Rice yield was reduced 70% by resistant M. vaginalis that escaped pyrazosulfuron-ethyl plus molinate, compared with hand weeding in direct-seeded rice culture. In contrast, rice yield was reduced 44% by resistant M. vaginalis that survived the pyrazosulfuron-ethyl plus molinate treatment, compared with pyrazolate plus butachlor in transplanted rice culture. In vitro acetolactate synthase (ALS) activity of the R biotype was 183, 35, 130 and 31 times more resistant to imazosulfuron, bensulfuron-methyl, cyclosulfamuron and pyrazosulfuron-ethyl, respectively, than the S biotype. Imidazolinone herbicides, imazapyr and imazaquin had similar effect on in vitro ALS activity of the R and S biotypes. The in vivo ALS activity of the R biotype was also less affected than the S biotype by the sulfonylurea herbicides imazosulfuron and pyrazosulfuron-ethyl. Results of in vitro and in vivo ALS assays indicate that the resistance mechanism of M. vaginalis to sulfonylurea herbicides may be due, in part, to an alteration in the target enzyme, ALS. Since the level of resistance in the enzyme assay was much lower than that in the whole-plant assay, other mechanisms of resistance, such as herbicide metabolism, may be involved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.