Lack of family support is associated with and may be a cause of diminished resilience. And more concern should be paid to FCs to improve FCs' health and emotional status. Education programs might be effective for improving caregivers' resilience. Further research with supportive interventions is indicated.
Methodology toward the stereoselective 1,2-cis glycoside linkage using intramolecular aglycon delivery (IAD) has been extensively developed. In the last two decades, progress has been made using various mixed acetal linkages and a number of glycosyl donor moieties to develop novel IAD strategies, mainly based on formation of acetal linkages. This account summarizes the newest naphthylmethyl (NAP) ether-mediated IAD as well as all the types of mediations for stereospecific construction of various 1,2-cis linkages, not only for beta-mannopyranoside, but also for other linkages almost without exception, including beta-L-rhamnoside.
In Saccharomyces cerevisiae, the accepted theory is that due to TCA cycle dysfunction, the cit1 mutant lacking the mitochondrial enzyme citrate synthase (Cit1) cannot grow on acetate, regardless of the presence of the peroxisomal isoenzyme (Cit2). In this study, we re-evaluated the roles of Cit1 and Cit2 in acetate utilization and examined the pathway of acetate metabolism by analysing mutants defective in TCA or glyoxylate cycle enzymes. Although cit1 cells showed significantly reduced growth on rich acetate medium (YPA), they exhibited growth similar to cit2 and the wild-type cells on minimal acetate medium (YNBA). Impaired acetate utilization by cit1 cit2 cells on YNBA was restored by ectopic expression of either Cit2 or its cytoplasmically localized variants. Deletion of any of the genes for the enzymes solely involved in the TCA cycle (IDH1, KGD1 and LSC1 ), except for SDH1, caused little defect in acetate utilization on YNBA but resulted in significant growth impairment on YPA. In contrast, cells lacking any of the genes involved in the glyoxylate cycle (ACO1, FUM1, MLS1, ICL1 and MDH2 ) did not grow on either YNBA or YPA. Deletion of SFC1 encoding the succinate-fumarate carrier also caused similar growth defects on YNBA. Our results suggest that in S. cerevisiae the glyoxylate cycle functions as a competent metabolic pathway for acetate utilization on YNBA, while both the TCA and glyoxylate cycles are essential for growth on YPA.
BackgroundA frequent manifestation of advanced cancer patients is malnutrition, which is correlated with poor prognosis and high mortality. Bioelectrical impedance analysis (BIA) is an easy-to-use and non-invasive technique to evaluate changes in body composition and nutritional status. We investigated BIA-derived phase angle as a prognostic indicator for survival in advanced cancer patients.MethodsTwenty-eight patients treated at the hospice center of Seoul St. Mary's Hospital underwent BIA measurements from January, 2013 to May, 2013. We also evaluated palliative prognostic index (PPI) and palliative performance scale to compare with the prognostic value of phase angle. Cox's proportional hazard models were constructed to evaluate the prognostic effect of phase angle. The Kaplan Meier method was used to calculate survival.ResultsUsing univariate Cox analysis, phase angle (hazard ratio [HR], 0.61/per degree increase; 95% confidence interval [CI], 0.42 to 0.89; P = 0.010), PPI (HR, 1.21; 95% CI, 1.00 to 1.47; P = 0.048) were found to be significantly associated with survival. Adjusting age, PPI, body mass index, phase angle significantly showed association with survival in multivariate analysis (HR, 0.64/per degree increase; 95% CI, 0.42 to 0.95; P = 0.028). Survival time of patients with phase angle ≥ 4.4° was longer than patients with phase angle < 4.4° (log rank, 6.208; P-value = 0.013).ConclusionOur data suggest BIA-derived phase angle may serve as an independent prognostic indicator in advanced cancer patients.
Hydroxyurea (HU) inhibits ribonucleotide reductase (RNR), which catalyzes the rate-limiting synthesis of deoxyribonucleotides for DNA replication. HU is used to treat HIV, sickle-cell anemia and some cancers. We found that, compared with vector control cells, low levels of alpha-synuclein (α-syn) protect S. cerevisiae cells from the growth inhibition and reactive oxygen species (ROS) accumulation induced by HU. Analysis of this effect using different α-syn mutants revealed that the α-syn protein functions in the nucleus and not the cytoplasm to modulate S-phase checkpoint responses: α-syn up-regulates histone acetylation and RNR levels, maintains helicase minichromosome maintenance protein complexes (Mcm2-7) on chromatin and inhibits HU-induced ROS accumulation. Strikingly, when residues 2-10 or 96-140 are deleted, this protective function of α-syn in the nucleus is abolished. Understanding the mechanism by which α-syn protects against HU could expand our knowledge of the normal function of this neuronal protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.