During growth on fermentable substrates, such as glucose, pyruvate, which is the
end-product of glycolysis, can be used to generate acetyl-CoA in the cytosol via
acetaldehyde and acetate, or in mitochondria by direct oxidative
decarboxylation. In the latter case, the mitochondrial pyruvate carrier (MPC) is
responsible for pyruvate transport into mitochondrial matrix space. During
chronological aging, yeast cells which lack the major structural subunit Mpc1
display a reduced lifespan accompanied by an age-dependent loss of autophagy.
Here, we show that the impairment of pyruvate import into mitochondria linked to
Mpc1 loss is compensated by a flux redirection of TCA cycle intermediates
through the malic enzyme-dependent alternative route. In such a way, the TCA
cycle operates in a “branched” fashion to generate pyruvate and is depleted of
intermediates. Mutant cells cope with this depletion by increasing the activity
of glyoxylate cycle and of the pathway which provides the nucleocytosolic
acetyl-CoA. Moreover, cellular respiration decreases and ROS accumulate in the
mitochondria which, in turn, undergo severe damage. These acquired traits in
concert with the reduced autophagy restrict cell survival of the mpc1∆ mutant
during chronological aging. Conversely, the activation of the carnitine shuttle
by supplying acetyl-CoA to the mitochondria is sufficient to abrogate the
short-lived phenotype of the mutant.