(CNS/ATM) systems utilize digital technologies, satellite systems, and various levels of automation to facilitate seamless global air traffic management. Automatic Dependent Surveillance-Broadcast (ADS-B), the core component of CNS/ATM, broadcasts important monitoring information, such as the location, altitude, and direction of aircraft, to the ground. However, ADS-B data are transmitted in an unencrypted (or unprotected) communication channel between ADS-B sensors and Air Traffic Control (ATC). Consequently, these data are vulnerable to security threats, such as spoofing, eavesdropping, and data modification. In this paper, we propose a method that protects the ADS-B data transmitted between ADS-B sensors and ATC using Simple Public Key Infrastructure (SPKI) certificates and symmetric cryptography. The SPKI certificates are used to grant transmission authorization to the ADS-B sensors, while symmetric cryptography is used to encrypt/decrypt the ADS-B data transmitted between the ADS-B sensors and ATC. The proposed security framework comprises an ADS-B sensor authentication module, an encrypted data processing module, and an ADS-B sensor information management module. We believe that application of the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.