A sensitive and selective fluorescence "turn-off" sensor to detect heparin using water-soluble silicon nanoparticles (Si NPs) was developed for the first time. The Si NPs were synthesized by a simple one-step procedure, which did not need high-temperature and complex modification. The as-prepared Si NPs featured strong fluorescence, favorable biocompatibility, and robust photo- and pH stability. Significantly, the Si NPs were induced to assemble or aggregate via hydrogen bonding, which resulted in the fluorescence of Si NPs quenched. Under the optimized conditions, the linear range was obtained from 0.02 to 2.0 μg/mL, with a limit of detection of 18 ng/mL (equal to 0.004 U/mL). It was lower than the proper therapeutic level of heparin during cardiovascular surgery and long-term therapy. This proposed method was relatively free of interference from heparin analogues, which commonly existed in heparin samples and could possibly affect heparin detection. Moreover, it did not need to introduce any control medium. As expected, the method was successfully applied to detect heparin in human serum samples with satisfactory recovery ranging from 98.8 to 102.5%. The Si NPs were superbly suitable for cell imaging owing to the negligible cytotoxicity and excellent biocompatibility.
The technique of combined flow injection CE (FI-CE) integrates the essential favorable merits of FI and CE. It utilizes the various excellent on-line sample pretreatments and preconcentration (such as cloud point extraction, SPE, ion-exchange, dynamic pH junction and head-column field-amplified sample stacking technique) of FI, which has the advantages of high speed, accuracy, precision and avoiding manual handling of sample and reagents. Therefore, the coupling of FI-CE is an attractive technique; it can significantly expand the application of CE and has achieved many publications since its first appearance. The basic principles, instrumental developments and applications of FI-CE system from 2006 to 2008 are reviewed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.