The abnormal proliferation of vascular smooth muscle cells (VSMCs) in arterial walls is an important pathogenic factor of vascular disorders such as diabetic atherosclerosis. We have reported the anti-inflammatory effect of an aqueous extract from Prunella vulgaris (APV) in vascular endothelial cell. In the present study, APV exhibited inhibitory effects on high glucose-stimulated VSMC proliferation, migration, and invasion activities, inducing G1 cell cycle arrest with downregulation of cyclins and CDKs and upregulation of the CKIs, p21waf1/cip1 and p27kip1. Furthermore, APV dose dependently suppressed the high glucose-induced matrix metalloproteinase activity. High glucose-induced phosphorylation of ERK, p38 MAPK, was decreased by the pretreatment of APV. NF-κB activation by high glucose was attenuated by APV, as an antioxidant. APV attenuated the high glucose-induced decrease of nuclear factor E2-related factor-2 (Nrf2) translocation and heme oxygenase-1 (HO-1) expression. Intracellular cGMP level was also increased by APV treatment. These results demonstrate that APV may inhibit VSMC proliferation via downregulating ROS/NF-κB /ERK/p38 MAPK pathways. In addition, APV has a beneficial effect by the interaction of Nrf2-mediated NO/cGMP with HO-1, suggesting that Prunella vulgaris may be useful in preventing diabetic atherosclerosis.
Atherosclerosis, a chronic and progressive disease characterized by vascular inflammation, is a leading cause of death in diabetes patients. Doinseunggitang (DYSGT), traditional prescription, has been used for promoting blood circulation to remove blood stasis. The aim of this study was to investigate the beneficial effects of DYSGT on endothelial dysfunction in diabetic atherosclerosis animal model. Apolipoprotein E knockout (ApoE KO) mice fed on a Western diet were treated with DYSGT (200 mg/kg/day). DYSGT significantly lowered blood glucose level and glucose tolerance as well as systolic blood pressure. Metabolic parameter showed that DYSGT markedly decreased triglyceride and LDL-cholesterol levels. In the thoracic aorta, the impairment of vasorelaxation response to acetylcholine and atherosclerotic lesion was attenuated by DYSGT. Furthermore, DYSGT restored the reduction of endothelial nitric oxide synthase (eNOS) expression, leading to the inhibition of intracellular adhesion molecule-1 (ICAM-1) and endothelin-1 (ET-1) expression. In conclusion, DYSGT improved the development of diabetic atherosclerosis via attenuation of the endothelial dysfunction, possibly by inhibiting ET-1, cell adhesion molecules, and lesion formation. Therefore, these results suggest that Korean traditional prescription Doinseunggitang may be useful in the treatment and prevention of diabetic vascular complications.
Edema is a symptom that results from the abnormal accumulation of fluid in the body. The cause of edema is related to the level of aquaporin (AQP)2 protein expression, which regulates the reabsorption of water in the kidney. Edema is caused by overexpression of the AQP2 protein when the concentration of Na+ in the blood increases. The rhizome of Atractylodes macrocephala has been used in traditional oriental medicine as a diuretic drug; however, the mechanism responsible for the diuretic effect of the aqueous extract from A. macrocephala rhizomes (AAMs) has not yet been identified. We examined the effect of the AAM on the regulation of water channels in the mouse inner medullary collecting duct (mIMCD)-3 cells under hypertonic stress. Pretreatment of AAM attenuates a hypertonicity-induced increase in AQP2 expression as well as the trafficking of AQP2 to the apical plasma membrane. Tonicity-responsive enhancer binding protein (TonEBP) is a transcription factor known to play a central role in cellular homeostasis by regulating the expression of some proteins, including AQP2. Western immunoblot analysis demonstrated that the protein and mRNA expression levels of TonEBP also decrease after AAM treatment. These results suggest that the AAM has a diuretic effect by suppressing water reabsorption via the downregulation of the TonEBP-AQP2 signaling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.