In this paper, a novel gate driver circuit, which can achieve high reliability for depletion mode in a‐InGaZnO thin‐film transistors (TFTs), was proposed. To prevent the leakage current paths for Q node effectively, the new driving method was proposed by adopting the negative gate‐to‐source voltage (VGS) value for pull‐down units. The results showed all the VOUT voltage waveforms were maintained at VGH voltage despite depletion‐mode operation. The proposed circuit could also obtain stable VOUT voltage when the threshold voltage for all TFTs was changed from −6.5 to +11.5 V. Therefore, the circuit can achieve high reliability regardless of threshold voltage value for a‐IGZO TFTs. In addition, the output characteristics and total power consumption were shown for the alternating current (AC)–driven and direct current (DC)–driven methods based on 120‐Hz full‐HD graphics (1920 × 1080) display panel. The results showed that the AC‐driven method could achieve improved VOUT characteristics compared with DC‐driven method since the leakage current path for Q node can be completely eliminated. Although power consumption of the AC‐driven method can be slightly increased compared with the DC‐driven method for enhancement mode, consumption can be lower when the operation has depletion‐mode characteristics by preventing a leakage current path for pull‐down units. Consequently, the proposed gate driver circuit can overcome the problems caused by the characteristics of a‐IGZO TFTs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.