We report a single-step lithographic approach for precisely mapping near field light diffraction in photoresist and fabricating complex subwavelength structures. This method relies on the diffraction of UV light from opaque patterns on a photomask, and utilizes the central diffraction maximum (known as the 'Poisson spot' for an opaque disk) and its higher orders. By correlating pattern geometries with the resulting diffraction, we demonstrate that the near field light intensity can be quantified to high precision and is in good agreement with theory. The method is further extended to capture higher order diffraction, which is utilized to fabricate unconventional subwavelength nanostructures with three-dimensional topographies. The simplicity of this process and its capability for light mapping suggest it to be an important tool for near field optical lithography.
Microlens arrays have been fabricated by 3D diffuser lithography in this study. The method mainly adopts two kinds of diffuser films with different transmittances and hazes, integrated by photolithography, polydimethylsiloxane (PDMS) molding and UV forming techniques, to get microlens arrays with different parameters and geometries. The features, such as height, geometry and fill factor of microlens arrays, are controlled by photolithography, using a photomask with circular holes and different exposure doses. The microlens arrays can also be duplicated and transferred to the surface of flexible polyethylene terephthalate (PET) substrate through PDMS molding and UV forming processes. Finally, the outcoupling efficiency of microlens arrays attached to organic light-emitting devices (OLEDs) can be measured and analyzed. More than 60% enhancement of luminous current efficiency can be obtained in experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.