A highly stretchable and transparent electrical heater is demonstrated by constructing a partially embedded silver nanowire percolative network on an elastic substrate. The stretchable network heater is applied on human wrists under real-time strain, bending, and twisting, and has potential for lightweight, biocompatible, and versatile wearable applications.
To overcome the limitation of the conventional single axis-strain sensor, we demonstrate a multidimensional strain sensor composed of two layers of prestrained silver nanowire percolation network with decoupled and polarized electrical response in principal and perpendicular directional strain. The information on strain vector is successfully measured up to 35% maximum strain with large gauge factor (>20). The potential of the proposed sensor as a versatile wearable device has been further confirmed.
As is frequently seen in sci-fi movies, future electronics are expected to ultimately be in the form of wearable electronics. To realize wearable electronics, the electric components should be soft, fl exible, and even stretchable to be human-friendly. An important step is presented toward realization of wearable electronics by developing a hierarchical multiscale hybrid nanocomposite for highly fl exible, stretchable, or transparent conductors. The hybrid nanocomposite combines the enhanced mechanical compliance, electrical conductivity, and optical transparency of small CNTs (d ≈ 1.2 nm) and the enhanced electrical conductivity of relatively bigger Ag nanowire (d ≈ 150 nm) backbone to provide effi cient multiscale electron transport path with Ag nanowire current backbone collector and local CNT percolation network. The highly elastic hybrid nanocomposite conductors and highly transparent fl exible conductors can be mounted on any non-planar or soft surfaces to realize human-friendly electronics interface for future wearable electronics.
Stretchable and transparent electronics have steadily attracted huge attention in wearable devices. Although Ag nanowire is the one of the most promising candidates for transparent and stretchable electronics, its electrochemical instability has forbidden its application to the development of electrochemical energy devices such as supercapacitors. Here, we introduce a highly stretchable and transparent supercapacitor based on electrochemically stable Ag-Au core-shell nanowire percolation network electrode. We developed a simple solution process to synthesize the Ag-Au core-shell nanowire with excellent electrical conductivity as well as greatly enhanced chemical and electrochemical stabilities compared to pristine Ag nanowire. The proposed core-shell nanowire-based supercapacitor still possesses fine optical transmittance and outstanding mechanical stability up to 60% strain. The Ag-Au core-shell nanowire can be a strong candidate for future wearable electrochemical energy devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.