Objective The purpose of this article was to perform a systematic review and meta-analysis regarding the diagnostic test accuracy of chest CT for detecting coronavirus disease 2019 . Methods PubMed, Embase, Web of Science, and CNKI were searched up to March 12, 2020. We included studies providing information regarding diagnostic test accuracy of chest CT for COVID-19 detection. The methodological quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies-2 tool. Sensitivity and specificity were pooled. Results Sixteen studies (n = 3186 patients) were included. The risks of bias in all studies were moderate in general. Pooled sensitivity was 92% (95% CI = 86-96%), and two studies reported specificity (25% [95% CI = 22-30%] and 33% [95% CI = 23-44%], respectively). There was substantial heterogeneity according to Cochran's Q test (p < 0.01) and Higgins I 2 heterogeneity index (96% for sensitivity). After dividing the studies into two groups based on the study site, we found that the sensitivity of chest CT was great in Wuhan (the most affected city by the epidemic) and the sensitivity values were very close to each other (97%, 96%, and 99%, respectively). In the regions other than Wuhan, the sensitivity varied from 61 to 98%. Conclusion Chest CT offers the great sensitivity for detecting COVID-19, especially in a region with severe epidemic situation. However, the specificity is low. In the context of emergency disease control, chest CT provides a fast, convenient, and effective method to early recognize suspicious cases and might contribute to confine epidemic. Key Points• Chest CT has a high sensitivity for detecting COVID-19, especially in a region with severe epidemic, which is helpful to early recognize suspicious cases and might contribute to confine epidemic.
A novel avian influenza A(H7N9) virus causing human infection emerged in February 2013 in China. To elucidate the mechanism of interspecies transmission, we compared the signature amino acids of avian influenza A(H7N9) viruses from human and non-human hosts and analysed the reassortants of 146 influenza A(H7N9) viruses with full genome sequences. We propose a genetic tuning procedure with continuous amino acid substitutions and reassorting that mediates host adaptation and interspecies transmission. When the early influenza A(H7N9) virus, containing ancestor haemagglutinin (HA) and neuraminidase (NA) genes similar to A/Shanghai/05 virus, circulated in waterfowl and transmitted to terrestrial poultry, it acquired an NA stalk deletion at amino acid positions 69 to 73. Then, receptor binding preference was tuned to increase the affinity to human-like receptors through HA G186V and Q226L mutations in terrestrial poultry. Additional mammalian adaptations such as PB2 E627K were selected in humans. The continual reassortation between H7N9 and H9N2 viruses resulted in multiple genotypes for further host adaptation. When we analysed a potential association of mutations and reassortants with clinical outcome, only the PB2 E627K mutation slightly increased the case fatality rate. Genetic tuning may create opportunities for further adaptation of influenza A(H7N9) and its potential to cause a pandemic. www.eurosurveillance.org Methods Virus sampling and isolation Specimens as well as clinical and epidemiological information were collected from human cases. Environmental samples and avian samples were collected in the area where human cases identified. Virus isolation was conducted by Chinese National Influenza Center (CNIC) in a biosafety level 3 facility using nineday-old specific pathogen-free (SPF) embryonated chicken eggs and incubated at 37 °C for 48-72 hours. The allantoic fluid was harvested, aliquoted and stored at-80 ºC until use. RNA extraction and genome sequencing Viral RNA was extracted using QIAamp Viral RNA Mini Kit (Qiagen, Hilden, Germany). Gene segments were amplified using the Qiagen OneStep RT-PCR Kit. A total of 48 primer pairs were used to generate PCR amplicons between 378 and 1,123 bp in length for full genome sequencing. Primer sequences are available from the authors on request. Amplified PCR products were purified using ExoSAP-IT reagent (USB, Cleveland, US). Complete genome sequencing was performed with an ABI 3730XL automatic DNA analyser (Applied Biosystems, Foster City, US) using the ABI BigDye Terminator v3.1 cycle sequencing kit (Applied Biosystems; Foster City, US). HA: haemagglutinin; NA: neuraminidase. Red dots represent the common ancestor of the novel H7N9 virus. A/Shanghai/5/2013 and A/Shanghai/1/2013 are highlighted in pink and green, respectively. Schematic unrooted trees of HA and NA genes are shown in lower left boxes. The authors gratefully acknowledge the originating and submitting laboratories who contributed sequences used in the phylogenetic analysis to GISAID, and recognise in ...
Higher selenium status has been shown to improve the clinical outcome of infections caused by a range of evolutionally diverse viruses, including SARS-CoV-2. However, the impact of SARS-CoV-2 on host-cell selenoproteins remains elusive. The present study investigated the influence of SARS-CoV-2 on expression of selenoprotein mRNAs in Vero cells. SARS-CoV-2 triggered an inflammatory response as evidenced by increased IL-6 expression. Of the 25 selenoproteins, SARS-CoV-2 significantly suppressed mRNA expression of ferroptosis-associated GPX4, DNA synthesis-related TXNRD3 and endoplasmic reticulum-resident SELENOF, SELENOK, SELENOM and SELENOS. Computational analysis has predicted an antisense interaction between SARS-CoV-2 and TXNRD3 mRNA, which is translated with high efficiency in the lung. Here, we confirmed the predicted SARS-CoV-2/ TXNRD3 antisense interaction in vitro using DNA oligonucleotides, providing a plausible mechanism for the observed mRNA knockdown. Inhibition of TXNRD decreases DNA synthesis which is thereby likely to increase the ribonucleotide pool for RNA synthesis and, accordingly, RNA virus production. The present findings provide evidence for a direct inhibitory effect of SARS-CoV-2 replication on the expression of a specific set of selenoprotein mRNAs, which merits further investigation in the light of established evidence for correlations between dietary selenium status and the outcome of SARS-CoV-2 infection.
Cell entry by SARS-CoV-2 requires the binding between the receptor-binding domain (RBD) of the viral Spike protein and the cellular angiotensin-converting enzyme 2 (ACE2). As such, RBD has become the major target for vaccine development, while RBD-specific antibodies are pursued as therapeutics. Here, we report the development and characterization of SARS-CoV-2 RBD-specific VHH/nanobody (Nb) from immunized alpacas. Seven RBD-specific Nbs with high stability were identified using phage display. They bind to SARS-CoV-2 RBD with affinity KD ranging from 2.6 to 113 nM, and six of them can block RBD-ACE2 interaction. The fusion of the Nbs with IgG1 Fc resulted in homodimers with greatly improved RBD-binding affinities (KD ranging from 72.7 pM to 4.5 nM) and nanomolar RBD-ACE2 blocking abilities. Furthermore, the fusion of two Nbs with non-overlapping epitopes resulted in hetero-bivalent Nbs, namely aRBD-2-5 and aRBD-2-7, with significantly higher RBD binding affinities (KD of 59.2 pM and 0.25 nM) and greatly enhanced SARS-CoV-2 neutralizing potency. The 50% neutralization dose (ND50) of aRBD-2-5 and aRBD-2-7 was 1.22 ng/mL (∼0.043 nM) and 3.18 ng/mL (∼0.111 nM), respectively. These high-affinity SARS-CoV-2 blocking Nbs could be further developed into therapeutics as well as diagnostic reagents for COVID-19. Importance To date, SARS-CoV-2 has caused tremendous loss of human life and economic output worldwide. Although a few COVID-19 vaccines have been approved in several countries, the development of effective therapeutics, including SARS-CoV-2 targeting antibodies, remains critical. Due to their small size (13-15 kDa), high solubility, and stability, Nbs are particularly well suited for pulmonary delivery and more amenable to engineer into multivalent formats than the conventional antibody. Here, we report a series of new anti-SARS-CoV-2 Nbs isolated from immunized alpaca and two engineered hetero-bivalent Nbs. These potent neutralizing Nbs showed promise as potential therapeutics against COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.