A patterned Ag structure was grown on a Si nanoporous pillar array (Si-NPA) by an immersion plating method, and its surface-enhanced Raman scattering (SERS) activity toward adenine was studied. It was shown that two kinds of Ag structures were grown on Si-NPA, a continuous film covering the Si-NPA substrate and composed of Ag nanocrystallites (nc-Ag), and a quasi-regular, interconnected network composed of loop-chains of sub-micron Ag crystallites surrounding the porous Si pillars. The SERS detection of low-concentration adenine solution was performed by using Ag/Si-NPA as active substrates, in which significantly enhanced Raman signals were observed. The SERS enhancement was attributed to the active spacing sites formed between the Ag particles and the nc-Ag which met the optimal size for causing a SERS effect. Based on the measured SERS spectra, the adsorption mode of adenine molecules on Ag particles was deduced. These results indicated that Ag/Si-NPA might be a promising active substrate for SERS detection of low-concentration bio-molecules.
A GaN/Si nanoheterostructure array was prepared by growing GaN nanostructures on silicon nanoporous pillar array (Si-NPA). Based on as-grown and annealed GaN/Si-NPA, two light-emitting diodes (LEDs) were fabricated. It was found that after the annealing treatment, both the turn-on voltage and the leakage current density of the nanoheterostructure varied greatly, together with the electroluminescence (EL) changed from a yellow band to a near infrared band. The EL variation was attributed to the radiative transition being transformed from a defect-related recombination in GaN to an interfacial recombination of GaN/Si-NPA. Ours might have provided an effective approach for fabricating GaN/Si-based LEDs with different emission wavelengths.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.