Ischemic heart disease (IHD) is one of the primary causes of death around the world. Therapeutic angiogenesis is a promising innovative approach for treating IHD, improving cardiac function by promoting blood perfusion to the ischemic myocardium. This treatment is especially important for targeting patients that are unable to undergo angioplasty or bypass surgery. Chinese herbal medicines have been used for more than 2,500 years and they play an important role alongside contemporary medicines in China. Growing evidence in animal models show Chinese herbal medicines can provide therapeutic effect on IHD by targeting angiogenesis. Identifying the mechanism in which Chinese herbal medicines can promote angiogenesis in IHD is a major topic in the field of traditional Chinese medicine, and has the potential for advancing therapeutic treatment. This review summarizes the progression of research and highlights potential pro-angiogenic mechanisms of Chinese herbal medicines in IHD. In addition, an outline of the limitations of Chinese herbal medicines and challenges they face will be presented.
In-wheel motor-driven vehicles are the development trend for future vehicles due to its high energy efficiency and low emission as well as its flexibility to achieve independent steering, driving, etc. However, the weighted wheel of in-wheel electric vehicles involves more unexpected unsprung vibrations, which imposes adverse effect on vehicle ride comfort. In addition, there exists an invariant point around the unsprung resonance frequency in both controlled and uncontrolled suspensions, which greatly limits the elimination of unsprung adverse effect of in-wheel electric vehicles. In this paper, a combined structure is proposed to eliminate the unsprung adverse effect. The structure is composed of the vehicle suspension and a tuned mass damper, which are both controlled by a sliding mode controller, aiming at eliminating the unsprung adverse effect as well as improving ride comfort across the whole frequency spectrum. The tunes mass damper is used to get rid of the constraint of the invariant point. The simulation and hardware-in-theloop results show that the root mean square of the sprung mass acceleration and tire deflection is reduced by 31.2% and 2.2% respectively, which indicates that the proposed method is effective and ride comfort is greatly improved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.