This paper aims to develop a laser assisted grinding process capable of manufacturing micro features in high strength materials. A diode laser with wavelength 808 nm was set on a precision grinding machine. Micro grooves were fabricated on high strength materials including silicon nitride and aluminium oxide by using the laser assisted grinding process, i.e. laser pre-heat workpiece flowed by micro grinding. The experimental results showed that the laser assisted grinding process resulted in deeper grooves due to thermal expansion of workpiece materials caused by laser heating. However, the machined surface roughness was more consistently better than that obtained using solo grinding process and applying coolant. No subsurface damage was observed in the SEM images of cross sections of the machined workpieces when laser assisted grinding process was used.
The modular magnetic suspension platform depends on multi degree of freedom of Lorentz force actuators for large bearing capacity, high precision positioning and structure miniaturization. To achieve the integration of vertical driving force and horizontal driving force, a novel 2- (two degrees-of-freedom) DOF Lorentz force actuator is developed by designing the pose of the windings and permanent magnets (PMs). The structure and the working principle are introduced. The electromagnetic force mathematical model is established by the equivalent magnetic circuit method to analyze the coupling of magnetic flux. The distribution characteristics of magnetic flux density are analyzed by the finite-element method (FEM). It is found that the coupling of the magnetic flux and the large magnetic field gradient severely reduce the uniformity of the air-gap magnetic field. The electromagnetic force characteristic is investigated by FEM and measurement experiments. The difference between FEM and experiment results is within 10%. The reasons of driving force fluctuation are explained based on the distribution of air-gap magnetic field. The actuator performance are compared under the sliding mode control algorithm and PID control algorithm and the positioning accuracy is 20 μm and 15 μm respectively. Compared with the similar configuration, the motion range and force coefficient of the Lorentz force actuator in this paper are larger. It has a certain guiding significance on the structure design of the multi degree of freed Lorentz force actuator.
For large bearing capacity and low current consumption of the magnetic suspension platform, a 2-DOF electromagnetic actuator with a new structure of halbach array is proposed to improve driving force coefficients. The structure and the working principle are introduced. An accurate sub domain model of the new structure is established to accurately and rapidly calculate the magnetic field distribution for obtaining the parameters and performance of the electromagnetic actuators. The analytical model results are verified by the finite element method. The force/torque model of the magnetic suspension platform is established based on the proposed 2-DOF electromagnetic actuator. Three position-sensitive detectors and six accelerometers are applied to perceive in real time the posture and vibration acceleration of the platform, respectively. Their hardware information is introduced and measurement models are established based on the layout. Finally, the electromagnetic characteristics of the proposed actuator are investigated and compared with the conventional counterpart by finite element analysis. The results show that the average magnetic field, 0.432T, horizontal and vertical force coefficient, 92.3 N/A and 30.95 N/A, and torque in x and z direction, 3.61 N·m and 8.49 N·m, of the proposed actuator are larger than those of the conventional one.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.