A growing body of evidence indicates that an inflammatory process in the substantia nigra, characterized by activation of resident microglia, likely either initiates or aggravates nigral neurodegeneration in Parkinson's disease (PD). To study the mechanisms by which nigral microglia are activated in PD, the potential role of alpha-synuclein (a major component of Lewy bodies that can cause neurodegeneration when aggregated) in microglial activation was investigated. The results demonstrated that in a primary mesencephalic neuron-glia culture system, extracellular aggregated human alpha-synuclein indeed activated microglia; microglial activation enhanced dopaminergic neurodegeneration induced by aggregated alpha-synuclein. Furthermore, microglial enhancement of alpha-synuclein-mediated neurotoxicity depended on phagocytosis of alpha-synuclein and activation of NADPH oxidase with production of reactive oxygen species. These results suggest that nigral neuronal damage, regardless of etiology, may release aggregated alpha-synuclein into substantia nigra, which activates microglia with production of proinflammatory mediators, thereby leading to persistent and progressive nigral neurodegeneration in PD. Finally, NADPH oxidase could be an ideal target for potential pharmaceutical intervention, given that it plays a critical role in alpha-synuclein-mediated microglial activation and associated neurotoxicity.
Post-acute sequelae of COVID-19 (PASC) represent an emerging global crisis. However, quantifiable risk-factors for PASC and their biological associations are poorly resolved. We executed a deep multi-omic, longitudinal investigation of 309 COVID-19 patients from initial diagnosis to convalescence (2-3 months later), integrated with clinical data, and patient-reported symptoms. We resolved four PASC-anticipating risk factors at the time of initial COVID-19 diagnosis: type 2 diabetes, SARS-CoV-2 RNAemia, Epstein-Barr virus viremia, and specific autoantibodies. In patients with gastrointestinal PASC, SARS-CoV-2-specific and CMV-specific CD8 + T cells exhibited unique dynamics during recovery from COVID-19. Analysis of symptom-associated immunological signatures revealed coordinated immunity polarization into four endotypes exhibiting divergent acute severity and PASC. We find that immunological associations between PASC factors diminish over time leading to distinct convalescent immune states. Detectability of most PASC factors at COVID-19 diagnosis emphasizes the importance of early disease measurements for understanding emergent chronic conditions and suggests PASC treatment strategies.
Highlights d Human ACE2 knockin mice were generated by using CRISPR/Cas9 technology d SARS-CoV-2 leads to robust replication in lung, trachea, and brain d SARS-CoV-2 causes interstitial pneumonia and elevated cytokine in aged hACE2 mice d High dose of SARS-CoV-2 can establish infection via intragastric route in hACE2 mice
We present an integrated analysis of the clinical measurements, immune cells and plasma multi-omics of 139 COVID-19 patients representing all levels of disease severity, from serial blood draws collected during the first week of infection following diagnosis. We identify a major shift between mild and moderate disease, at which point elevated inflammatory signaling is accompanied by the loss of specific classes of metabolites and metabolic processes. Within this stressed plasma environment at moderate disease, multiple unusual immune cell phenotypes emerge and amplify with increasing disease severity. We condensed over 120,000 immune features into a single axis to capture how different immune cell classes coordinate in response to SARS-CoV-2. This immune-response axis independently aligns with the major plasma composition changes, with clinical metrics of blood clotting, and with the sharp transition between mild and moderate disease. This study suggests that moderate disease may provide the most effective setting for therapeutic intervention.
Protein glycosylation is a common post-translational modification and has been increasingly recognized as one of the most prominent biochemical alterations associated with malignant transformation and tumorigenesis. N-linked glycosylation is prevalent in proteins on the extracellular membrane, and many clinical biomarkers and therapeutic targets are glycoproteins. Here, we describe a protocol for solid-phase extraction of N-linked glycopeptides and subsequent identification of N-linked glycosylation sites (N-glycosites) by tandem mass spectrometry. The method oxidizes the carbohydrates in glycopeptides into aldehydes, which can be immobilized on a solid support. The N-linked glycopeptides are then optionally labeled with a stable isotope using deuterium-labeled succinic anhydride and the peptide moieties are released by peptide-N-glycosidase. In a single analysis, the method identifies hundreds of N-linked glycoproteins, the site(s) of N-linked glycosylation and the relative quantity of the identified glycopeptides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.