The seminal work of Gatys et al. demonstrated the power of Convolutional Neural Networks (CNNs) in creating artistic imagery by separating and recombining image content and style. This process of using CNNs to render a content image in different styles is referred to as Neural Style Transfer (NST). Since then, NST has become a trending topic both in academic literature and industrial applications. It is receiving increasing attention and a variety of approaches are proposed to either improve or extend the original NST algorithm. In this paper, we aim to provide a comprehensive overview of the current progress towards NST. We first propose a taxonomy of current algorithms in the field of NST. Then, we present several evaluation methods and compare different NST algorithms both qualitatively and quantitatively. The review concludes with a discussion of various applications of NST and open problems for future research. A list of papers discussed in this review, corresponding codes, pre-trained models and more comparison results are publicly available at: https://github.com/ycjing/Neural-Style-Transfer-Papers. IndexTerms-Neural style transfer (NST), convolutional neural network ! Neural Style Transfer Example-Based Techniques Colour Image Analogy Texture Model-Optimisation-Based Offline Neural Methods Multiple-Style-Per-Model Neural Methods Dumoulin'17 [53] Chen'17 [54] Li'17 [55] Zhang'17 [56] Luan'17 [84] Mechrez'17 [85]Photorealistic Liao'17 [88] Attribute Champandard'16 [65] Doodle Ruder'16 [74] Video Selim'16 [73] Portrait Castillo'17 [71] Instance Gatys'17 [60] Improvement Image Gatys'16 [10] Li'17 [42] Risser'17 [44] Li'17 [45] Li'16 [46] Image Champandard'16 [65] Chen'16 [68] Mechrez'18 [69]
The Fast Style Transfer methods have been recently proposed to transfer a photograph to an artistic style in real-time. This task involves controlling the stroke size in the stylized results, which remains an open challenge. In this paper, we present a stroke controllable style transfer network that can achieve continuous and spatial stroke size control. By analyzing the factors that influence the stroke size, we propose to explicitly account for the receptive field and the style image scales. We propose a StrokePyramid module to endow the network with adaptive receptive fields, and two training strategies to achieve faster convergence and augment new stroke sizes upon a trained model respectively. By combining the proposed runtime control strategies, our network can achieve continuous changes in stroke sizes and produce distinct stroke sizes in different spatial regions within the same output image.
Prior normalization methods rely on affine transformations to produce arbitrary image style transfers, of which the parameters are computed in a pre-defined way. Such manually-defined nature eventually results in the high-cost and shared encoders for both style and content encoding, making style transfer systems cumbersome to be deployed in resource-constrained environments like on the mobile-terminal side. In this paper, we propose a new and generalized normalization module, termed as Dynamic Instance Normalization (DIN), that allows for flexible and more efficient arbitrary style transfers. Comprising an instance normalization and a dynamic convolution, DIN encodes a style image into learnable convolution parameters, upon which the content image is stylized. Unlike conventional methods that use shared complex encoders to encode content and style, the proposed DIN introduces a sophisticated style encoder, yet comes with a compact and lightweight content encoder for fast inference. Experimental results demonstrate that the proposed approach yields very encouraging results on challenging style patterns and, to our best knowledge, for the first time enables an arbitrary style transfer using MobileNet-based lightweight architecture, leading to a reduction factor of more than twenty in computational cost as compared to existing approaches. Furthermore, the proposed DIN provides flexible support for state-of-the-art convolutional operations, and thus triggers novel functionalities, such as uniform-stroke placement for non-natural images and automatic spatial-stroke control.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.