Forest canopy height is an indispensable forest vertical structure parameter for understanding the carbon cycle and forest ecosystem services. A variety of studies based on spaceborne Lidar, such as ICESat, ICESat-2 and airborne Lidar, were conducted to estimate forest canopy height at multiple scales. However, while a few studies have been conducted based on ICESat-2 simulated data from airborne Lidar data, few studies have analyzed ATL08 and ATL03 products derived from the ATLAS sensor onboard ICESat-2 for regional vegetation canopy height mapping. It is necessary and promising to explore how data obtained by ICESat-2 can be applied to estimate forest canopy height. This study proposes a new means to estimate forest canopy height, defined as the mean height of trees within a given forest area, using a combination of ICESat-2 ATL08 and ATL03 data and ZY-3 satellite stereo images. Five procedures were used to estimate the forest canopy height of the city of Nanning in China: (1) Processing ground photons in a 30 m × 30 m grid; (2) Extracting a digital surface model (DSM) using ZY-3 stereo images; (3) Calculating a discontinuous canopy height model (CHM) dataset; (4) Validating the DSM and ground photon height using GEDI data; (5) Estimating the regional wall-to-wall forest canopy height product based on the backpropagation artificial neural network (BP-ANN) model and Landsat 8 vegetation indices and independent accuracy assessments with field measured plots. The validation shows a root mean square error (RMSE) of 3.34 m to 3.47 m and a coefficient of determination R2 = 0.51. The new method shows promise and can be used for large-scale forest canopy height mapping at various resolutions or in combination with other data, such as SAR images. Finally, this study analyzes resolutions and how to filter effective data when ATL08 data are directly used to generate regional or global vegetation height products, which will be the focus of future research.
Fires are frequent in boreal forests affecting forest areas. The detection of forest disturbances and the monitoring of forest restoration are critical for forest management. Vegetation phenology information in remote sensing images may interfere with the monitoring of vegetation restoration, but little research has been done on this issue. Remote sensing and the geographic information system (GIS) have emerged as important tools in providing valuable information about vegetation phenology. Based on the MODIS and Landsat time-series images acquired from 2000 to 2018, this study uses the spatio-temporal data fusion method to construct reflectance images of vegetation with a relatively consistent growth period to study the vegetation restoration after the Greater Hinggan Mountain forest fire in the year 1987. The influence of phenology on vegetation monitoring was analyzed through three aspects: band characteristics, normalized difference vegetation index (NDVI) and disturbance index (DI) values. The comparison of the band characteristics shows that in the blue band and the red band, the average reflectance values of the study area after eliminating phenological influence is lower than that without eliminating the phenological influence in each year. In the infrared band, the average reflectance value after eliminating the influence of phenology is greater than the value with phenological influence in almost every year. In the second shortwave infrared band, the average reflectance value without phenological influence is lower than that with phenological influence in almost every year. The analysis results of NDVI and DI values in the study area of each year show that the NDVI and DI curves vary considerably without eliminating the phenological influence, and there is no obvious trend. After eliminating the phenological influence, the changing trend of the NDVI and DI values in each year is more stable and shows that the forest in the region was impacted by other factors in some years and also the recovery trend. The results show that the spatio-temporal data fusion approach used in this study can eliminate vegetation phenology effectively and the elimination of the phenology impact provides more reliable information about changes in vegetation regions affected by the forest fires. The results will be useful as a reference for future monitoring and management of forest resources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.