Synthetic structural materials with exceptional mechanical performance suffer from either large weight and adverse environmental impact (for example, steels and alloys) or complex manufacturing processes and thus high cost (for example, polymer-based and biomimetic composites). Natural wood is a low-cost and abundant material and has been used for millennia as a structural material for building and furniture construction. However, the mechanical performance of natural wood (its strength and toughness) is unsatisfactory for many advanced engineering structures and applications. Pre-treatment with steam, heat, ammonia or cold rolling followed by densification has led to the enhanced mechanical performance of natural wood. However, the existing methods result in incomplete densification and lack dimensional stability, particularly in response to humid environments, and wood treated in these ways can expand and weaken. Here we report a simple and effective strategy to transform bulk natural wood directly into a high-performance structural material with a more than tenfold increase in strength, toughness and ballistic resistance and with greater dimensional stability. Our two-step process involves the partial removal of lignin and hemicellulose from the natural wood via a boiling process in an aqueous mixture of NaOH and NaSO followed by hot-pressing, leading to the total collapse of cell walls and the complete densification of the natural wood with highly aligned cellulose nanofibres. This strategy is shown to be universally effective for various species of wood. Our processed wood has a specific strength higher than that of most structural metals and alloys, making it a low-cost, high-performance, lightweight alternative.
Wood, an earth-abundant material, is widely used in our everyday life. With its mesoporous structure, natural wood is comprised of numerous long, partially aligned channels (lumens) as well as nanochannels that stretch along its growth direction. This wood mesostructure is suitable for a range of emerging applications, especially as a membrane/separation material. Here, we report a mesoporous, three-dimensional (3D) wood membrane decorated with palladium nanoparticles (Pd NPs/wood membrane) for efficient wastewater treatment. The 3D Pd NPs/wood membrane possesses the following advantages: (1) the uniformly distributed lignin within the wood mesostructure can effectively reduce Pd(II) ions to Pd NPs; (2) cellulose, with its abundant hydroxyl groups, can immobilize Pd NPs; (3) the partially aligned mesoporous wood channels as well as their inner ingenious microstructures increase the likelihood of wastewater contacting Pd NPs decorating the wood surface; (4) the long, Pd NP-decorated channels facilitate bulk treatment as water flows through the entire mesoporous wood membrane. As a proof of concept, we demonstrated the use and efficiency of a Pd NPs/wood membrane to remove methylene blue (MB, CHNClS) from a flowing aqueous solution. The turnover frequency of the Pd NPs/wood membrane, ∼2.02 mol·mol·min, is much higher than the values reported in the literature. The water treatment rate of the 3D Pd NPs/wood membrane can reach 1 × 10 L·m·h with a high MB removal efficiency (>99.8%). The 3D mesoporous wood membrane with partially aligned channels exhibits promising results for wastewater treatment and is applicable for an even wider range of separation applications.
We propose to realize ultra-wideband polarization conversion metasurfaces in microwave regime through multiple plasmon resonances. An ultra-wideband polarization conversion metasurface is designed using a double-head arrow structure and is further demonstrated both numerically and experimentally. Four plasmon resonances are generated by electric and magnetic resonances, which lead to bandwidth expansion of cross-polarization reflection. The simulated results show that the maximum conversion efficiency is nearly 100% at the four plasmon resonance frequencies and a 1:4 3 dB bandwidth can be achieved for both normally incident x- and y-polarized waves. Experimental results agree well with simulation ones.
A new concept of the coding phase gradient metasurface (CPGM) is proposed, which is constructed using the phase gradient metasurface as the coding elements. Different from the previous coding metasurface (CM), both the coding sequences and gradient phases in the coding elements are designed to manipulate the electromagnetic (EM) wave for the CPGMs, and thus the manipulation will be more flexible. As an example, wide-band, wide-angle CPGMs with zero and non-zero phase gradient based on Pancharatnam-Berry (PB) phase are achieved using the co-polarization reflection unit cells under circularly polarized (CP) wave incidence. Both theoretically calculated and numerically simulated scattering patterns of the designed CPGMs demonstrate the expected manipulations. Additionally, two kinds of random CPGMs with different phase gradients are designed for radar cross section (RCS) reduction, and the measured RCS reveals a good accordance with the simulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.