Early consumption of starter feed promotes rumen development in lambs. We examined rumen development in lambs fed starter feed for 5 weeks using histological and biochemical analyses and by performing high-throughput sequencing in rumen tissues. Additionally, rumen contents of starter feed-fed lambs were compared to those of breast milk-fed controls. Our physiological and biochemical findings revealed that early starter consumption facilitated rumen development, changed the pattern of ruminal fermentation, and increased the amylase and carboxymethylcellulase activities of rumen micro-organisms. RNA-seq analysis revealed 225 differentially expressed genes between the rumens of breast milk- and starter feed-fed lambs. These DEGs were involved in many metabolic pathways, particularly lipid and carbohydrate metabolism, and included HMGCL and HMGCS2. Sequencing analysis of 16S rRNA genes revealed that ruminal bacterial communities were more diverse in breast milk-than in starter feed-fed lambs, and each group had a distinct microbiota. We conclude that early starter feeding is beneficial to rumen development and physiological function in lambs. The underlying mechanism may involve the stimulation of ruminal ketogenesis and butanoate metabolism via HMGCL and HMGCS2 combined with changes in the fermentation type induced by ruminal microbiota. Overall, this study provides insights into the molecular mechanisms of rumen development in sheep.
The APS Journal Legacy Content is the corpus of 100 years of historical scientific research from the American Physiological Society research journals. This package goes back to the first issue of each of the APS journals including the American Journal of Physiology, first published in 1898. The full text scanned images of the printed pages are easily searchable. Downloads quickly in PDF format.
The aim of this study was to determine the association of residual feed intake (RFI) with growth performance, blood metabolic parameters, and body composition factors in growing lambs. Individual body weight (BW) and dry matter intake (DMI) were determined in 137 male Hu lambs that were given a pellet feed four times a day for 50 d. RFI did not show a correlation with metabolic BW (MBW) or average daily gain (ADG), but it showed a positive correlation with DMI and feed conversation ratio (FCR). Organ weight and intestine length had a large influence on RFI in lambs. The low-RFI lambs have smaller rumen and longer duodenum indicating the less feed intake and more sufficient absorption rate of low-RFI lambs. The smaller organs like liver, lung and kidney in low-RFI lambs may be related to lower energy consumption and slower metabolic rate. The observed bigger testis was in low-RFI lambs was another cause of the improved feed efficiency. Finally, the plasma concentrations of thyroxine (T4) and adrenocorticotropic hormone (ACTH) were lower in the ELow-RFI group than in the EHigh-RFI group. This study provides new insight into the biological processes underlying variations in feed efficiency in growing lambs.
The APS Journal Legacy Content is the corpus of 100 years of historical scientific research from the American Physiological Society research journals. This package goes back to the first issue of each of the APS journals including the American Journal of Physiology, first published in 1898. The full text scanned images of the printed pages are easily searchable. Downloads quickly in PDF format.
The Small Tailed Han sheep and Hu sheep are two prolific local sheep in China. In this study, the polymorphisms of BMPR-IB (Bone morphogenetic protein receptor IB), BMP-15 (Bone morphogenetic protein 15) and FSHR (follicle stimulating hormone receptor) were investigated to check whether they are associated with litter size in Small Tailed Han sheep and Hu sheep. Consequently, three polymorphisms, FecB mutation in BMPR-IB (c.746A>G), FecG mutation in BMP-15 (c.718C>T) and the mutation (g. 47C>T) in FSHR were found in the above two sheep breeds with a total number of 1630 individuals. The single marker association analysis showed that the three mutations were significantly associated with litter size. The ewes with genotype FecBB/FecBB and FecBB/FecB+ had 0.78 and 0.58 more lambs (p < 0.01) than those with genotype FecB+/FecB+, respectively. The heterozygous Han and Hu ewes with FecXG/FecX+ genotype showed 0.30 (p = 0.05) more lambs than those with the FecX+/FecX+ genotype. For FSHR gene, the ewes with genotype CC had 0.52 (p < 0.01) and 0.75 (p < 0.01) more lambs than those with genotypes TC and TT, respectively. Combined effect analyses indicated an extremely significant interaction (p < 0.01) between the random combinations of BMPR-IB, BMP-15 and FSHR genes on litter size. In addition, the Han and Hu ewes with BB/G+/CC genotype harbor the highest litter size among ewes analyzed in current study. In conclusion, BMPR-IB, BMP-15 and FSHR polymorphisms could be used as genetic markers in multi-gene pyramiding for improving litter size in sheep husbandry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.