A three-dimensional numerical model is proposed to simulate the dynamic motion of red blood cells ͑RBCs͒ in simple shear flow. The RBCs are approximated by ghost cells consisting of Newtonian liquid drops enclosed by Skalak membranes which take into account the membrane shear elasticity and the membrane area incompressibility. The RBCs have an initially biconcave discoid resting shape, and the internal liquid is assumed to have the same physical properties as the matrix fluid. The simulation is based on a hybrid method, in which the immersed boundary concept is introduced into the framework of the lattice Boltzmann method, and a finite element model is incorporated to obtain the forces acting on the nodes of the cell membrane which is discretized into flat triangular elements. The dynamic motion of RBCs is investigated in simple shear flow under a broad range of shear rates. At large shear rates, the cells are found to carry out a swinging motion, in which periodic inclination oscillation and shape deformation superimpose on the membrane tank treading motion. With the shear rate decreasing, the swinging amplitude of the cell increases, and finally triggers a transition to tumbling motion. This is the first direct numerical simulation that predicts both the swinging motion of the RBCs and the shear rate induced transition, which have been observed in a recent experiment. It is also found that as the mode changes from swinging to tumbling, the apparent viscosity of the suspension increases monotonically.
SUMMARYTaking body forces into account is not new for the lattice Boltzmann method, yet most of the existing approaches can only treat steady and uniform body forces. To manage situations with time-and spacedependent body forces or source terms, this paper proposes a new approach through theoretical derivation and numerical verification. The method by attaching an extra term to the lattice Boltzmann equation is still used, but the expression of the extra term is modified. It is the modified extra term that achieves the particularity of the new approach. This approach can not only introduce unsteady and non-uniform body forces into momentum equations, but is also able to add an arbitrary source term to the continuity equation. Both the macroscopic equations from multi-scale analysis and the simulated results of typical examples show that the accuracy with second-order convergence can be guaranteed within incompressible limit.
Highlights:1. The validity of random displacement model (RDM) to simulate suspended sediment concentration is verified.2. A concept of integrated sediment diffusion coefficient, which is equal to a coefficient multiplied by turbulent diffusion coefficient, is introduced to study the dispersion and diffusion in vegetated flow.3. Results show that in flow with submerged canopy is larger than that in emergent canopy flow.
The pressure fluctuations and runner loads on a pump-turbine runner during runaway process are very violent and the corresponding flow evolution is complicated. To study these phenomena and their correlations in depth, the runaway processes of a model pump-turbine at four guide vane openings (GVOs) were simulated by three-dimensional computational fluid dynamics (3D-CFD). The results show that the flow structures around runner inlet have regular development and transition patterns—the reverse flow occurs when the trajectory moves to the turbine-brake region and the main reverse velocity shifts locations among the hub side, the shroud side and the midspan as the trajectory comes forward and backward in the S-shape region. The locally distributed reverse flow vortex structures (RFVS) enhance the local rotor–stator interaction (RSI) and make the pressure fluctuations in vaneless space at the corresponding section stronger than at the rest sections along the spanwise direction. The transitions of RFVS, turning from the hub side to midspan, facilitate the inception and development of rotating stall, which propagates at approximately 45–72% of the runner rotation frequency. The evolving rotating stall induces asymmetrical pressure distribution on the runner blade, resulting in intensive fluctuations of runner torque and radial force. During the runaway process, the changing characteristics of the reactive axial force are dominated by the change rate of flow discharge, and the amplitude of low frequency component of axial force is in proportion to the amplitude of discharge change rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.