Image segmentation is an important process and a prerequisite for object-based image analysis, but segmenting an image into meaningful geo-objects is a challenging problem. Recently, some scholars have focused on hybrid methods that employ initial segmentation and subsequent region merging since hybrid methods consider both boundary and spatial information. However, the existing merging criteria (MC) only consider the heterogeneity between adjacent segments to calculate the merging cost of adjacent segments, thus limiting the goodness-of-fit between segments and geo-objects because the homogeneity within segments and the heterogeneity between segments should be treated equally. To overcome this limitation, in this paper a hybrid remote-sensing image segmentation method is employed that considers the objective heterogeneity and relative homogeneity (OHRH) for MC during region merging. In this paper, the OHRH method is implemented in five different study areas and then compared to our region merging method using the objective heterogeneity (OH) method, as well as the full lambda-schedule algorithm (FLSA). The unsupervised evaluation indicated that the OHRH method was more accurate than the OH and FLSA methods, and the visual results showed that the OHRH method could distinguish both small and large geo-objects. The segments showed greater size changes than those of the other methods, demonstrating the superiority of considering within-and between-segment heterogeneity in the OHRH method.
Abstract:Image segmentation is an important process and a prerequisite for object-based image analysis. Thus, evaluating the performance of segmentation algorithms is essential to identify effective segmentation methods and to optimize the scale. In this paper, we propose an unsupervised evaluation (UE) method using the area-weighted variance (WV) and Jeffries-Matusita (JM) distance to compare two image partitions to evaluate segmentation quality. The two measures were calculated based on the local measure criteria, and the JM distance was improved by considering the contribution of the common border between adjacent segments and the area of each segment in the JM distance formula, which makes the heterogeneity measure more effective and objective. Then the two measures were presented as a curve when changing the scale from 8 to 20, which can reflect the segmentation quality in both over-and under-segmentation. Furthermore, the WV and JM distance measures were combined by using three different strategies. The effectiveness of the combined indicators was illustrated through supervised evaluation (SE) methods to clearly reveal the segmentation quality and capture the trade-off between the two measures. In these experiments, the multiresolution segmentation (MRS) method was adopted for evaluation. The proposed UE method was compared with two existing UE methods to further confirm their capabilities. The visual and quantitative SE results demonstrated that the proposed UE method can improve the segmentation quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.