IL-17F and IL-17A are members of the IL-17 pro-inflammatory cytokine family. IL-17A has been implicated in the pathogenesis of autoimmune diseases. IL-17F is a disulfidelinked dimer that contains a cysteine-knot motif. We hypothesized that IL-17F and IL-17A could form a heterodimer due to their sequence homology and overlapping pattern of expression. We evaluated the structure of recombinant IL-17F and IL-17A proteins, as well as that of natural IL-17F and IL-17A derived from activated human CD4؉ T cells, by enzyme-linked immunosorbent assay, immunoprecipitation followed by Western blotting, and mass spectrometry. We find that both IL-17F and IL-17A can form both homodimeric and heterodimeric proteins when expressed in a recombinant system, and that all forms of the recombinant proteins have in vitro functional activity. Furthermore, we find that in addition to the homodimers of IL-17F and IL-17A, activated human CD4؉ T cells also produce the IL-17F/IL-17A heterodimer. These data suggest that the IL-17F/IL-17A heterodimer may contribute to the T cell-mediated immune responses.Interleukins 17F 3 and 17A (IL-17A) are closely related members of the IL-17 cytokine family, and share 50% amino acid identity. Studies in the mouse have identified Th17 cells as a distinct CD4ϩ T cell lineage that is defined by the production of IL-17F and IL-17A (1-7). IL-6 and transforming growth factor- (TGF-) are required for the differentiation of naïve CD4ϩ T cells to Th17 cells (1,8), which are maintained in the presence of IL-23 and IL-1. Conversely, IL-4 and interferon-␥ can inhibit the development of Th17 cells (9, 10). Th17 cells have been implicated in the pathology of mouse autoimmune disease models (2).Expression of IL-17F and IL-17A has been detected in activated human peripheral blood lymphocytes. It has been shown by reverse transcriptase-PCR experiments that the cytokines are expressed in activated human CD4ϩ T cells (11,12). Expression of IL-17F and IL-17A has also been observed in tissue samples from various autoimmune diseases such as rheumatoid arthritis, multiple sclerosis, psoriasis, inflammatory bowel disease, and asthma (2, 3, 13-22).The crystal structure of IL-17F has been solved and shows that the protein forms a disulfide-linked dimeric glycoprotein (23). IL-17A is also a disulfide-linked homodimeric glycoprotein (24), although crystal structure or data defining the precise subunit interactions are lacking. The IL-17F homodimer includes a classical cysteine knot motif, which is found in the TGF-, bone morphogenetic protein, and nerve growth factor superfamilies (25, 26). One difference in the cysteine knot motif of IL-17F compared with the other known cysteine knot protein families is that it only utilizes four cysteines instead of the classical six cysteines to form the knot.There have been reports that some of the cysteine knot family members can exist as heterodimers in vivo. TGF-1.2 and -2.3 were identified in bovine bone extracts, whereas inhibin and activin AB have been found in gonadal fluids (27...
Myostatin is a secreted TGF-beta family member that controls skeletal muscle growth. Humans, cattle, and dogs carrying natural loss-of-function mutations in the myostatin gene and myostatin knockout mice exhibit significant increases in skeletal muscle mass. Treatment of adult mice with antimyostatin antibodies also resulted in significant muscle mass increases. However, myostatin-knockout mice that were treated with a soluble form of the activin type II receptor (ActRII) B increased their muscle mass by an additional 15-25%, indicating that there is at least one additional ligand, in addition to myostatin, that functions to limit muscle growth. Here, both soluble ActRII and -IIB fragment-crystallizable proteins were used to affinity purify their native ligands from human and mouse sera. Using mass spectrometry-based proteomics and in vitro binding assays we have identified and confirmed that a number of TGF-beta family members, including myostatin, activins-A, -B, and -AB, bone morphogenetic proteins (BMPs) -9, -10, and -11, bind to both ActRIIs. Many of these factors, such as BMPs-11, -9, and -10 were discovered in systemic circulation for the first time, indicating that these ligands may also act in an endocrine fashion. Using a promoter-specific gene reporter assay, we demonstrated that soluble ActRIIB fragment-crystallizable proteins can inhibit the canonical signaling induced by these ligands. In addition, like myostatin, these factors were able to block the differentiation of myoblast cells into myotubes. However, in addition to myostatin, only BMP-11, and activins-A, -B, and -AB could be blocked from inhibiting the myoblast-to-myotube differentiation with both soluble ActRIIs, thus implicating them as potential novel regulators of muscle growth.
BackgroundThe R620W variant in protein tyrosine phosphatase non-receptor 22 (PTPN22) is associated with rheumatoid arthritis (RA). The PTPN22 gene has alternatively spliced transcripts and at least two of the splice forms have been confirmed to encode different PTPN22 (LYP) proteins, but detailed information regarding expression of these is lacking, especially with regard to autoimmune diseases.MethodsWe have investigated the mRNA expression of known PTPN22 splice forms with TaqMan real-time PCR in relation to ZNF592 as an endogenous reference in peripheral blood cells from three independent cohorts with RA patients (n = 139) and controls (n = 111) of Caucasian origin. Polymorphisms in the PTPN22 locus (25 SNPs) and phenotypic data (gender, disease activity, ACPA and RF status) were used for analysis. Additionally, we addressed possible effects of methotrexate treatment on PTPN22 expression.ResultsWe found consistent differences in the expression of the PTPN22 splice forms in unstimulated peripheral blood mononuclear cells between RA patients and normal controls. This difference was more pronounced when comparing the ratio of splice forms and was not affected by methotrexate treatment.ConclusionsOur data show that RA patients and healthy controls have a shift in balance of expression of splice forms derived from the PTPN22 gene. This balance seems not to be caused by treatment and may be of importance during immune response due to great structural differences in the encoded PTPN22 proteins.
While myriad molecular formats for bispecific antibodies have been examined to date, the simplest structures are often based on the scFv. Issues with stability and manufacturability in scFv-based bispecific molecules, however, have been a significant hindrance to their development, particularly for high-concentration, stable formulations that allow subcutaneous delivery. Our aim was to generate a tetravalent bispecific molecule targeting two inflammatory mediators for synergistic immune modulation. We focused on an scFv-Fc-scFv format, with a flexible (A4T)3 linker coupling an additional scFv to the C-terminus of an scFv-Fc. While one of the lead scFvs isolated directly from a naïve library was well-behaved and sufficiently potent, the parental anti-CXCL13 scFv 3B4 required optimization for affinity, stability, and cynomolgus ortholog cross-reactivity. To achieve this, we eschewed framework-based stabilizing mutations in favor of complementarity-determining region (CDR) mutagenesis and re-selection for simultaneous improvements in both affinity and thermal stability. Phage-displayed 3B4 CDR-mutant libraries were used in an aggressive “hammer-hug” selection strategy that incorporated thermal challenge, functional, and biophysical screening. This approach identified leads with improved stability and >18-fold, and 4,100-fold higher affinity for both human and cynomolgus CXCL13, respectively. Improvements were exclusively mediated through only 4 mutations in VL-CDR3. Lead scFvs were reformatted into scFv-Fc-scFvs and their biophysical properties ranked. Our final candidate could be formulated in a standard biopharmaceutical platform buffer at 100 mg/ml with <2% high molecular weight species present after 7 weeks at 4 °C and viscosity <15 cP. This workflow has facilitated the identification of a truly manufacturable scFv-based bispecific therapeutic suitable for subcutaneous administration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.