Dioscin, a steroidal saponin isolated from Dioscorea nipponica Makino, has previously been shown to possess antiarthritic effects. However, the underlying mechanism is still elusive. Herein, we investigated the therapeutic effects of dioscin on collagen-induced arthritis (CIA) in DBA/1 mice and related mechanism. Cytokine production in CII-specific immune responses were measured by enzyme-linked immunosorbent assay (ELISA); Th17 cell-related gene expression, including IL-17A, ROR[Formula: see text] and IL-23p19, were detected by qPCR analysis; Surface marker, T regulatory (Treg) cells and intracellular cytokines (IL-17A and IFN-[Formula: see text]) were evaluated by flow cytometry. We performed Th17 cell differentiation assay in vitro. Results showed that, in vivo, dioscin treatment significantly reduced the severity of CIA, which was accompanied by decreased Th17 response, but not Th1 and Treg response; dioscin-treated mice also showed lower percentage of CD11b[Formula: see text] Gr-1[Formula: see text] neutrophils; In vitro, dioscin treatment suppressed the differentiation of naive CD4[Formula: see text] T cells into Th17 cell and decreased IL-17A production. Collectively, our results indicate that dioscin exerts antiarthritic effects by inhibiting Th17 cell immune response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.