Large data generated by scientific applications imposes challenges in storage and efficient query processing. Many queries against scientific data are analytical in nature and require super-linear computation time using straightforward methods. Spatial distance histogram (SDH) is one of the basic queries to analyze the molecular simulation (MS) data, and it takes quadratic time to compute using brute-force approach. Often, an SDH query is executed continuously to analyze the simulation system over a period of time. This adds to the total time required to compute SDH. In this paper, we propose an approximate algorithm to compute SDH efficiently over consecutive time periods. In our approach, data is organized into a Quad-tree based data structure. The spatial locality of the particles (at given time) in each node of the tree is acquired to determine the particle distribution. Similarly, the temporal locality of particles (between consecutive time periods) in each node is also acquired. The spatial distribution and temporal locality are utilized to compute the approximate SDH at every time instant. The performance is boosted by storing and updating the spatial distribution information over time. The efficiency and accuracy of the proposed algorithm is supported by mathematical analysis and results of extensive experiments using biological data generated from real MS studies.
In the context of China’s dual carbon target, Beijing, as the capital of China, should play an exemplary role in carbon emission reduction. On the premise of optimizing high-emission sectors such as coal and industry, Beijing is still a certain distance from the goal of carbon neutrality. Therefore, on the basis of Beijing’s energy resource endowment, considering Beijing’s economic development and carbon neutrality goals and scientifically and reasonably planning Beijing’s carbon emission reduction path are important tasks. We construct an energy structure optimization model to achieve the goal of carbon neutrality by 2050. The model analysis concludes that the residents and transportation sectors will account for a large proportion of Beijing’s total carbon emissions in the future. To achieve the goal of carbon neutrality, the electricity substitution of fossil energy and the high proportion of external power are two necessary measures, and the optimal path of carbon emission reduction is proposed.
Particle simulation has become an important research tool in many scientific and engineering fields. Data generated by such simulations impose great challenges to database storage and query processing. One of the queries against particle simulation data, the spatial distance histogram (SDH) query, is the building block of many high-level analytics, and requires quadratic time to compute using a straightforward algorithm. Previous work has developed efficient algorithms that compute exact SDHs. While beating the naive solution, such algorithms are still not practical in processing SDH queries against large-scale simulation data. In this paper, we take a different path to tackle this problem by focusing on approximate algorithms with provable error bounds. We first present a solution derived from the aforementioned exact SDH algorithm, and this solution has running time that is unrelated to the system size N. We also develop a mathematical model to analyze the mechanism that leads to errors in the basic approximate algorithm. Our model provides insights on how the algorithm can be improved to achieve higher accuracy and efficiency. Such insights give rise to a new approximate algorithm with improved time/accuracy tradeoff. Experimental results confirm our analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.