We document the development of the first version of the U.K. Earth System Model UKESM1.The model represents a major advance on its predecessor HadGEM2-ES, with enhancements to all component models and new feedback mechanisms. These include a new core physical model with a well-resolved stratosphere; terrestrial biogeochemistry with coupled carbon and nitrogen cycles and enhanced land management; tropospheric-stratospheric chemistry allowing the holistic simulation of radiative forcing from ozone, methane, and nitrous oxide; two-moment, five-species, modal aerosol; and ocean biogeochemistry with two-way coupling to the carbon cycle and atmospheric aerosols. The complexity of coupling between the ocean, land, and atmosphere physical climate and biogeochemical cycles in UKESM1 is unprecedented for an Earth system model. We describe in detail the process by which the coupled model was developed and tuned to achieve acceptable performance in key physical and Earth system quantities and discuss the challenges involved in mitigating biases in a model with complex connections between its components. Overall, the model performs well, with a stable pre-industrial state and good agreement with observations in the latter period of its historical simulations. However, global mean surface temperature exhibits stronger-than-observed cooling from 1950 to 1970, followed by rapid warming from 1980 to 2014. Metrics from idealized simulations show a high climate sensitivity relative to previous generations of models: Equilibrium climate sensitivity is 5.4 K, transient climate response ranges from 2.68 to 2.85 K, and transient climate response to cumulative emissions is 2.49 to 2.66 K TtC −1 . Plain Language SummaryWe describe the development and behavior of UKESM1, a novel climate model that includes improved representations of processes in the atmosphere, ocean, and on land. These processes are inter-related: For example, dust is produced on the land and blown up into the atmosphere where it affects the amount of sunlight falling on Earth. Dust can also be dissolved in the ocean, where it affects marine life. This in turn changes both the amount of carbon dioxide absorbed by the ocean and the material emitted from the surface into the atmosphere, which has an affect on the formation of clouds. UKESM1 includes many processes and interactions such as these, giving it a high level of complexity. Ensuring realistic process behavior is a major challenge in the development of our model, and we have carefully tested this. UKESM1 performs well, correctly exhibiting stable results from a continuous pre-industrial simulation (used to provide a reference for future experiments) and showing good agreement
High-resolution NWP models which can explicitly allow convection (albeit poorly resolved) are usually run in limited-area domains, and are nested inside coarser resolution models with parametrized convection. The mismatch of the grids and model physics at the boundaries of the limited-area fine resolution model can be a major source of model error. Two major issues are the change in the representation of convection (parameterized to explicit) as air enters the fine resolution model and the limited boundary updating frequency. In this paper, a variable-grid, fine-resolution, limited-area version of the Met Office's Unified Model (UM), developed with the aim of addressing this and related problems with nested models is described. In this variable resolution model, the grid size varies smoothly from coarser (but still convection permitting) resolution at the outer boundaries to a uniform fine resolution in the interior of the domain. In this paper we present results from a comparison of this variable grid model with the analogous results from an equivalent nested model set with uniform high-resolution model nested inside a lower resolution one. The comparison is carried out for a number of convective cases. It is found that the variable resolution model gives very similar results to the nested model system in the inner fixed resolution part of the domain away from the boundaries, both in individual case studies and when statistics are aggregated over cases. This gives confidence in the validity of the variable resolution approach. It is shown that the variable resolution model also gives the hoped for benefits of reducing artefacts at the boundaries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.