Multishell hollow nanoarchitectures are one of the most important branches in the nanomaterial field due to their enormous potential in many fields, but synthesizing them in a well-controlled manner remains challenging. Herein, we present a general strategy for the construction of multishell hollow metal/nitrogen/carbon dodecahedrons (metal@NC) with well-defined and precisely controlled architectures. This strategy is based on the pyrolysis of multilayer solid ZIFs prepared by a step-by-step crystal growth approach, which enables precise control over the shell number and composition of the resultant hollow metal@NC. Impressively, our strategy can be further extended to the synthesis of yolk@multishell hollow structures or multishell hollow structures that are assembled by carbon nanotubes. The multishell hollow structures can efficiently facilitate the mass diffusion, which together with the high dispersity and increased surface area are responsible for their significantly enhanced catalytic performances for the selective hydrogenation of biomass-derived furfural to cyclopentanol when compared with their solid and single-shell counterparts. We anticipate that our general strategy would shed light on the rational design and accurate construction of other complex multishell hollow materials for various important yet challenging applications.
In order to improve the catalytic performance of oxygen reduction reaction (ORR), it is pivotal to increase the density and accessibility of the active sites. Herein, we have developed a template-free melamine-assisted cocalcined strategy to afford Fe-embedded and N-doped carbons (Fe–N–C) with not only high density of atomically dispersed Fe–N x active sites but also abundant three-dimensional interconnected mesopores by directly pyrolyzing Fe-ZIF-8 covered with a controllable melamine layer. It is demonstrated that the introduction of melamine in the precursor plays a key role in constructing various carbonized products with controllable morphology, porosity, and components. With an optimal mass ratio 1:1 of melamine to Fe-ZIF-8, the resultant Fe@MNC-1 exhibits excellent ORR activity and stability, which exceeds 20 wt % commercial Pt/C catalyst (with a half-wave potential of 0.88 V vs 0.85 V) in an alkaline electrolyte and is even comparable to the commercial Pt/C catalyst (with a half-wave potential of 0.78 V vs 0.80 V) in an acidic electrolyte. To the best of our knowledge, Fe@MNC-1 can be ranked among the best nonprecious metal electrocatalysts for ORR in both alkaline and acidic media. The present synthetic strategy may provide a new opportunity for the design and construction of metal–organic framework-derived nanomaterials with rational composition and a desired porous structure to boost their electrocatalytic performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.