In this paper, a local coupling multi-trace domain decomposition method (LCMT-DDM) based on surface integral equation (SIE) formulations is proposed to analyze electromagnetic scattering from multilayered dielectric objects. Different from the traditional SIE-DDM, where the interactions between sub-domains are accounted for using global radiation coupling, LCMT-DDM uses a local coupling scheme. The original multilayered object is decomposed into several independent domains, i.e. the exterior region (free space) and many homogeneous interior regions (dielectrics). The boundaries of sub-domains are all touching-faces, where only the Robin transmission conditions (RTCs) are enforced to ensure the field continuity. Hence, each sub-domain only couples with its neighboring regions, which makes the DDM system a highly sparse matrix especially when the number of sub-domains is large. In each sub-domain, the electric field integral equation (EFIE) and the magnetic field integral equation (MFIE) for dielectrics are used as the governing equations. By imposing RTCs, well-conditioned equations are formed in each sub-domain without invoking the combined field integral equation (CFIE), which usually causes accuracy issues in dielectric modeling. Since the sub-domain matrices are diagonally dominant, the flexible generalized minimal residual (FGMRES) technique is used to accelerate the iterative solution of the whole DDM system. Moreover, an effective preconditioner that can be recursively constructed is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.