SUMMARY
Cysteine string protein α (CSPα), a presynaptic co-chaperone for Hsc70, is required for synapse maintenance. Deletion of CSPα leads to neuronal dysfunction, synapse loss, and neurodegeneration. We utilized unbiased, systematic proteomics to identify putative CSPα protein clients. We found 22 such proteins whose levels are selectively decreased in CSPα knockout synapses. Of these putative CSPα protein clients, two directly bind to the CSPα chaperone complex and are bona fide clients. They are the t-SNARE SNAP-25 and the GTPase dynamin 1, which are necessary for synaptic vesicle fusion and fission, respectively. Using hippocampal cultures, we show CSPα regulates the stability of client proteins and synaptic vesicle number. Our analysis of CSPα-dynamin 1 interactions reveals unexpectedly that CSPα regulates the polymerization of dynamin 1. CSPα therefore participates in synaptic vesicle endocytosis and may facilitate exo- and endocytic coupling. These findings advance the understanding of how synapses are functionally and structurally maintained.
Abstract:Interbody fusion cages made of poly-ether-etherketone (PEEK) have been widely used in clinics for spinal disorders treatment; however, they do not integrate well with surrounding bone tissue. Ti-6Al-4V (Ti) has demonstrated greater osteoconductivity than PEEK, but the traditional Ti cage is generally limited by its much greater elastic modulus (110 GPa) than natural bone (0.05-30 GPa).In this study, we developed a porous Ti cage using electron beam melting (EBM) technique to reduce its elastic modulus and compared its spinal fusion efficacy with a PEEK cage in a preclinical sheep anterior cervical fusion model. A porous Ti cage possesses a fully interconnected porous structure (porosity: 68 ± 5.3%; pore size: 710 ± 42 μm) and a similar Young's modulus as natural bone (2.5 ± 0.2 GPa). When implanted in vivo, the porous Ti cage promoted fast bone ingrowth, achieving similar bone volume fraction at 6 months as the PEEK cage without autograft transplantation. Moreover, it promoted better osteointegration with higher degree (2-10x) of bone-material binding, demonstrated by histomorphometrical analysis, and significantly higher mechanical stability (P < 0.01), shown by biomechanical testing. The porous Ti cage fabricated by EBM could achieve fast bone ingrowth. In addition, it had better osseointegration and superior mechanical stability than the conventional PEEK cage, demonstrating great potential for clinical application.
A multi-functional oil-water separator is prepared from a paper towel spray coated with superamphiphobic (i.e., superhydrophobic and superoleophobic) nanoparticles. After the separator is pre-wetted with ethanol, followed by water, water can be removed from the light oil-water mixture and emulsions by gravity with high separation efficiency (99.9%) and separation flux. Vice versa, heavy oil can be removed by gravity on an ethanol-oil pre-wetted SA-paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.