The interval prediction of wind speed is crucial for the economic and safe operation of wind farms. To overcome the probability density function parameter optimization and long-term correlation of time series problems in an interval prediction method, a hybrid model based on the beta distribution of an allele real-coded quantum evolutionary algorithm (ARQEA) and a shared weight long short-term memory (SWLSTM) neural network is proposed for predicting the interval of short-term wind speed, which is beta–ARQEA–SWLSTM. Input variables are determined via autocorrelation functions, and the shape and position parameters in the beta distribution function are optimized by the ARQEA algorithm. An interval-divided multi-distribution function aggregation is proposed to deal with the fluctuation of wind speed series. Lastly, case studies are provided to demonstrate the effectiveness of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.