Photoelectron transfer between heterojuctions is an important process for photocatalysis, and identification of the electron transfer process provides valuable information for catalyst design. Herein, Ti3C2, one of the widely used two‐dimensional materials, is used to produce a heterojunction of TiO2 and Ti3C2 by an in situ growth method and the photogenerated electrons transfer between the two components for photocatalytic water splitting to hydrogen is investigated. Theoretical simulation and experimental tests proclaim that electrons transfer from Ti3C2 to TiO2 forms an internal electric field, which implies that there exists the driving force of electronic movement from TiO2 to Ti3C2. In situ irradiation X‐ray photoelectron spectroscopy shows the binding energies of TiC (in Ti3C2) and TiO (in TiO2) move toward negative and positive positions, respectively, verifying the photogenerated electrons produced from TiO2 and transferring to Ti3C2 driven by the internal electric field. In addition, the amount of TiO2 nanoparticles also affects the hydrogen evolution rate. Several parallel experiments are designed to uncover the fact that less or excess amount of TiO2 nanoparticles leads to a tinier shift of binding energy, which hints the quantity of heterojunction is a considerable factor in photocatalytic performance. This work develops a new method to directly monitor the photoelectron transfer process between heterojuctions.
The realistic application of lithium–sulfur (Li–S) batteries has been severely hindered by the sluggish conversion kinetics of polysulfides (LiPS) and inhomogeneous deposition of Li2S at high sulfur loading and low electrolyte/sulfur ratio (E/S). Herein, a flexible Li–S battery architecture based on electrocatalyzed cathodes made of interfacial engineered TiC nanofibers and in situ grown vertical graphene are developed. Integrated 1D/2D heterostructured electrocatalysts are realized to enable highly improved Li+ and electron transportation together with significantly enhanced affinity to LiPS, which effectively accelerate the conversion kinetics between sulfur species, and thus induce homogeneous deposition of Li2S in the catalyzed cathodes. Consequently, highly active electro‐electrocatalysts‐based cells exhibit remarkable rate capability at 2C with a high specific capacity of 971 mAh g−1. Even at ultra‐high sulfur loading and low E/S ratio, the battery still delivers a high areal capacity of 9.1 mAh cm−2, with a flexible pouch cell being demonstrated to power a LED array at different bending angles with a high capacity over 100 cycles. This work puts forward a novel pathway for the rational design of effective nanofiber electrocatalysts for cathodes of high‐performance Li–S batteries.
Lead‐free Cs2AgBiBr6 double perovskite has received widespread attention because of its non‐toxicity and high thermal stability. However, intrinsic bromide ion (Br–) migration limits continuous operation of Cs2AgBiBr6‐based perovskite solar cells (PSCs). Herein, an operational and simple strategy is carried out to improve the power conversion efficiency (PCE) and long‐term stability of Cs2AgBiBr6‐based PSCs by introducing 1‐butyl‐1‐methylpyrrolidinium chloride (BMPyrCl) and 1‐butyl‐3‐methylpyridinium chloride (BMPyCl) ionic liquids (ILs). The higher binding energy between Br– in Cs2AgBiBr6 and cation in IL containing pyrrole can inhibit Br– migration effectively, thereby reducing film defects and improving energy level matching. The optimized PCE of 2.22% is obtained for hole transport layer‐free, carbon‐based PSC, which hardly degrades at 40% ± 5% relative humidity and 25 °C for 40 days. This work highlights an effective method to mitigate the halide migration in Cs2AgBiBr6 perovskite, thus providing an effective route in promoting the development of lead‐free double PSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.