The European Renal Association-European Dialysis and Transplant Association (ERA-EDTA) Registry has produced a new set of primary renal diagnosis (PRD) codes that are intended for use by affiliated registries. It is designed specifically for use in renal centres and registries but is aligned with international coding standards supported by the WHO (International Classification of Diseases) and the International Health Terminology Standards Development Organization (SNOMED Clinical Terms). It is available as supplementary material to this paper and free on the internet for non-commercial, clinical, quality improvement and research use, and by agreement with the ERA-EDTA Registry for use by commercial organizations. Conversion between the old and the new PRD codes is possible. The new codes are very flexible and will be actively managed to keep them up-to-date and to ensure that renal medicine can remain at the forefront of the electronic revolution in medicine, epidemiology research and the use of decision support systems to improve the care of patients.
We are interested in the computation of ontology extracts based on forgetting from large ontologies in real-world scenarios. Such scenarios require nearly all of the terms in the ontology to be forgotten, which poses a significant challenge to forgetting tools. In this paper we show that modularization and forgetting can be combined beneficially in order to compute ontology extracts. While a module is a subset of axioms of a given ontology, the solution of forgetting (also known as a uniform interpolant) is a compact representation of the ontology limited to a subset of the signature. The approach introduced in this paper uses an iterative workflow of four stages: (i) extension of the given signature and, if needed partitioning, (ii) modularization, (iii) forgetting, and (iv) evaluation by domain expert. For modularization we use three kinds of modules: localitybased, semantic and minimal subsumption modules. For forgetting three tools are used: Nui, Lethe and Fame. An evaluation on the SNOMED CT and NCIt ontologies for standard concept name lists showed that precomputing ontology modules reduces the number of terms that need to be forgotten. An advantage of the presented approach is high precision of the computed ontology extracts.
BackgroundOntologies are key enabling technologies for the Semantic Web. The Web Ontology Language (OWL) is a semantic markup language for publishing and sharing ontologies.ObjectiveThe supply of customizable, computable, and formally represented molecular genetics information and health information, via electronic health record (EHR) interfaces, can play a critical role in achieving precision medicine. In this study, we used cystic fibrosis as an example to build an Ontology-based Knowledge Base prototype on Cystic Fibrobis (OntoKBCF) to supply such information via an EHR prototype. In addition, we elaborate on the construction and representation principles, approaches, applications, and representation challenges that we faced in the construction of OntoKBCF. The principles and approaches can be referenced and applied in constructing other ontology-based domain knowledge bases.MethodsFirst, we defined the scope of OntoKBCF according to possible clinical information needs about cystic fibrosis on both a molecular level and a clinical phenotype level. We then selected the knowledge sources to be represented in OntoKBCF. We utilized top-to-bottom content analysis and bottom-up construction to build OntoKBCF. Protégé-OWL was used to construct OntoKBCF. The construction principles included (1) to use existing basic terms as much as possible; (2) to use intersection and combination in representations; (3) to represent as many different types of facts as possible; and (4) to provide 2-5 examples for each type. HermiT 1.3.8.413 within Protégé-5.1.0 was used to check the consistency of OntoKBCF.ResultsOntoKBCF was constructed successfully, with the inclusion of 408 classes, 35 properties, and 113 equivalent classes. OntoKBCF includes both atomic concepts (such as amino acid) and complex concepts (such as “adolescent female cystic fibrosis patient”) and their descriptions. We demonstrated that OntoKBCF could make customizable molecular and health information available automatically and usable via an EHR prototype. The main challenges include the provision of a more comprehensive account of different patient groups as well as the representation of uncertain knowledge, ambiguous concepts, and negative statements and more complicated and detailed molecular mechanisms or pathway information about cystic fibrosis.ConclusionsAlthough cystic fibrosis is just one example, based on the current structure of OntoKBCF, it should be relatively straightforward to extend the prototype to cover different topics. Moreover, the principles underpinning its development could be reused for building alternative human monogenetic diseases knowledge bases.
The meaning of the term 'abdomen' has become increasingly ambiguous, as it has to satisfy the contemporary requirements of natural language discourse, literature, gross and radiological anatomy and its role in ontologies supporting electronic records and data modelling. It is critical that there is an agreed understanding of the semantics of the | 1473 BROWN et al. How to cite this article: Brown PJ, Gao Y, Clunie D. What is the abdomen? Rationalising clinical and anatomical perspectives using formal semantics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.