Herein, the voltage and current output characteristics of a laser photovoltaic (PV) module applied to a wireless power transmission system using a laser beam are analyzed. First, an experiment is conducted to obtain the characteristic data of the voltage and current based on the laser output power of the laser PV module, which generates the maximum power from the laser beam at a wavelength of 1080 nm; subsequently, the small-signal voltage and current characteristics of the laser PV module are analyzed. From the analysis results, it is confirmed that the laser PV module has a characteristic in which the maximum power generation point varies according to the power level of the laser beam. In addition, similar to the solar cell module, it is confirmed that the laser PV module has a current source and a voltage source region, and it shows a small signal resistance characteristic having a negative value as the operating point goes to the current source region. In addition, in this paper, by reflecting these electrical characteristics, a method for designing the controller of a power converter capable of charging a battery while generating maximum power from a PV module is proposed. Since the laser PV module corresponds to the input source of the boost converter used as the power conversion unit, the small-signal transfer function of the boost converter, including the PV module, is derived for the controller design. Therefore, by designing a controller that can stably control the voltage of the PV module in the current source, the maximum power point, and voltage source regions defined according to the output characteristics of the laser PV module, the maximum power is generated from the PV module. Herein, a systematic controller design method for a boost converter for laser wireless power transmission is presented, and the proposed method is validated based on the simulation and experimental results of a 25-W-class boost converter based on a microcontroller unit control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.