PurposeThe efficacy of neoadjuvant chemoradiotherapy (NCRT) plus surgery for locally advanced esophageal squamous cell carcinoma (ESCC) remains controversial. In this trial, we compared the survival and safety of NCRT plus surgery with surgery alone in patients with locally advanced ESCC.Patients and MethodsFrom June 2007 to December 2014, 451 patients with potentially resectable thoracic ESCC, clinically staged as T1-4N1M0/T4N0M0, were randomly allocated to NCRT plus surgery (group CRT; n = 224) and surgery alone (group S; n = 227). In group CRT, patients received vinorelbine 25 mg/m2 intravenously (IV) on days 1 and 8 and cisplatin 75 mg/m2 IV day 1, or 25 mg/m2 IV on days 1 to 4 every 3 weeks for two cycles, with a total concurrent radiation dose of 40.0 Gy administered in 20 fractions of 2.0 Gy on 5 days per week. In both groups, patients underwent McKeown or Ivor Lewis esophagectomy. The primary end point was overall survival.ResultsThe pathologic complete response rate was 43.2% in group CRT. Compared with group S, group CRT had a higher R0 resection rate (98.4% v 91.2%; P = .002), a better median overall survival (100.1 months v 66.5 months; hazard ratio, 0.71; 95% CI, 0.53 to 0.96; P = .025), and a prolonged disease-free survival (100.1 months v 41.7 months; hazard ratio, 0.58; 95% CI, 0.43 to 0.78; P < .001). Leukopenia (48.9%) and neutropenia (45.7%) were the most common grade 3 or 4 adverse events during chemoradiotherapy. Incidences of postoperative complications were similar between groups, with the exception of arrhythmia (group CRT: 13% v group S: 4.0%; P = .001). Peritreatment mortality was 2.2% in group CRT versus 0.4% in group S (P = .212).ConclusionThis trial shows that NCRT plus surgery improves survival over surgery alone among patients with locally advanced ESCC, with acceptable and manageable adverse events.
Early recognition and aggressive resuscitation of pediatric-neonatal septic shock by community physicians can save lives. Educational programs that promote ACCM-PALS recommended rapid, stepwise escalations in fluid as well as inotropic therapies may have value in improving outcomes in these children.
Small-molecule Smac mimetics are being developed as a novel class of anticancer drugs. Recent studies have shown that Smac mimetics target cellular inhibitor of apoptosis protein (cIAP)-1/2 for degradation and induce tumor necrosis factor-A (TNFA)-dependent apoptosis in tumor cells. In this study, we have investigated the mechanism of action and therapeutic potential of two different types of novel Smac mimetics, monovalent SM-122 and bivalent SM-164. Our data showed that removal of cIAP-1/2 by Smac mimetics or small interfering RNA is not sufficient for robust TNFA-dependent apoptosis induction, and X-linked inhibitor of apoptosis protein (XIAP) plays a critical role in inhibiting apoptosis induction. Although SM-164 is modestly more effective than SM-122 in induction of cIAP-1/2 degradation, SM-164 is 1,000 times more potent than SM-122 as an inducer of apoptosis in tumor cells, which is attributed to its much higher potency in binding to and antagonizing XIAP. SM-164 induces rapid cIAP-1 degradation and strong apoptosis in the MDA-MB-231 xenograft tumor tissues and achieves tumor regression, but has no toxicity in normal mouse tissues. Our study provides further insights into the mechanism of action for Smac mimetics and regulation of apoptosis by inhibitor of apoptosis proteins. Furthermore, our data provide evidence that SM-164 is a promising new anticancer drug for further evaluation and development. [Cancer Res 2008;68(22):9384-93]
We report the discovery and characterization of SM-406 (compound 2), a potent and orally bioavailable Smac mimetic and an antagonist of the inhibitor of apoptosis proteins (IAPs). This compound binds to XIAP, cIAP1 and cIAP2 proteins with Ki values of 66.4 nM, 1.9 nM and 5.1 nM, respectively. Compound 2 effectively antagonizes XIAP BIR3 protein in a cell-free functional assay, induces rapid degradation of cellular cIAP1 protein and inhibits cancer cell growth in various human cancer cell lines. It has good oral bioavailability in mice, rats, non-human primates and dogs, is highly effective in induction of apoptosis in xenograft tumors and is capable of complete inhibition of tumor growth. Compound 2 is currently in Phase I clinical trials for the treatment of human cancer.
The interaction between β-catenin and B-cell CLL/lymphoma 9 (BCL9), critical for the transcriptional activity of β-catenin, is mediated by a helical segment from BCL9 and a large binding groove in β-catenin. Design of potent, metabolically stable BCL9 peptides represents an attractive approach to inhibit the activity of β-catenin. In this study, we report the use of the Huisgen 1,3-dipolar cycloaddition reaction to generate triazole-stapled BCL9 α-helical peptides. The high efficiency and mild conditions of this “click” reaction combined with the ease of synthesis of the necessary unnatural amino acids allows for facile synthesis of triazole-stapled peptides. We have performed extensive optimization of this approach and identified the optimal combinations of azido and alkynyl linkers necessary for stapling BCL9 helices. The unsymmetrical nature of the triazole staple also allowed the synthesis of double-stapled BCL9 peptides, which show a marked increase in helical character and an improvement in binding affinity and metabolic stability relative to wild-type and linear BCL9 peptides. This study lays the foundation for further optimization of these triazole-stapled BCL9 peptides as potent, metabolically stable and cell-permeable inhibitors to target the β-catenin and BCL9 interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.