Adipocyte dysfunction is strongly associated with the development of obesity, which is a major risk factor for many disorders including diabetes, hypertension, and heart disease. It is generally accepted that the regulation of adipogenesis or adipokines expression prevents obesity. In this study, we show that isorhamnetin inhibits adipocyte differentiation, as evidenced by reduced triglyceride (TG) accumulation and glycerol-3-phosphate dehydrogenase (GPDH) activity. At the molecular level, the mRNA expression levels of peroxidase proliferator-activated receptor-gamma (PPAR-gamma) and CCAAT/enhancer-binding protein-alpha (C/EBP-alpha), which are the major adipogenic transcription factors, were markedly reduced by isorhamnetin. However, the mRNA levels of C/EBP-beta and -delta, the upstream regulators of PPAR-gamma and C/EBP-alpha, were not reduced by isorhamnetin. Moreover, the mRNA levels of PPAR-gamma target genes such as lipoprotein lipase (LPL), CD36, aP2, and liver X receptor-alpha (LXR-alpha) were downregulated by isorhamnetin. We also showed that isorhamnetin inhibits the expression and secretion of adiponectin, and the results of adiponectin promoter assays suggest the inhibition of PPAR-gamma expression as a possible mechanism underlying the isorhamnetin-mediated effects. Taken together, these results indicate that isorhamnetin inhibits adipogenesis through downregulation of PPAR-gamma and C/EBP-alpha.
A theoretical model is introduced to evaluate the ultimate resolution of plasmonic lithography using a ridge aperture. The calculated and experimental results of the line array pattern depth are compared for various half pitches. The theoretical analysis predicts that the resolution of plasmonic lithography strongly depends on the ridge gap, achieving values under 1x nm with a ridge gap smaller than 10 nm. A micrometer‐scale circular contact probe is fabricated for high speed patterning with high positioning accuracy, which can be extended to a high‐density probe array. Using the circular contact probe, high‐density line array patterns are recorded with a half pitch up to 22 nm and good agreement is obtained between the theoretical model and experiment. To record the high density line array patterns, the line edge roughness (LER) is reduced to ≈17 nm from 29 nm using a well‐controlled developing process with a smaller molecular weight KOH‐based developer at a temperature below 10°C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.