Ginseng has been used as a traditional herb in Asian countries for thousands of years. It contains a large number of active ingredients including steroidal saponins, protopanaxadiols, and protopanaxatriols, collectively known as ginsenosides. In the last few decades, the antioxidative and anticancer effects of ginseng, in addition to its effects on improving immunity, energy and sexuality, and combating cardiovascular diseases, diabetes mellitus, and neurological diseases, have been studied in both basic and clinical research. Ginseng could be a valuable resource for future drug development; however, further higher quality evidence is required. Moreover, ginseng may have drug interactions although the available evidence suggests it is a relatively safe product. This article reviews the bioactive compounds, global distribution, and therapeutic potential of plants in the genus Panax.
An electrochemical immunosensor employs antibodies as capture and detection means to produce electrical charges for the quantitative analysis of target molecules. This sensor type can be utilized as a miniaturized device for the detection of point-of-care testing (POCT). Achieving high-performance analysis regarding sensitivity has been one of the key issues with developing this type of biosensor system. Many modern nanotechnology efforts allowed for the development of innovative electrochemical biosensors with high sensitivity by employing various nanomaterials that facilitate the electron transfer and carrying capacity of signal tracers in combination with surface modification and bioconjugation techniques. In this review, we introduce novel nanomaterials (e.g., carbon nanotube, graphene, indium tin oxide, nanowire and metallic nanoparticles) in order to construct a high-performance electrode. Also, we describe how to increase the number of signal tracers by employing nanomaterials as carriers and making the polymeric enzyme complex associated with redox cycling for signal amplification. The pros and cons of each method are considered throughout this review. We expect that these reviewed strategies for signal enhancement will be applied to the next versions of lateral-flow paper chromatography and microfluidic immunosensor, which are considered the most practical POCT biosensor platforms.
Propionibacterium acnes, an anaerobic pathogen, plays an important role in the pathogenesis of acne and seems to initiate the inflammatory process by producing proinflammatory cytokines. In order to demonstrate the anti-inflammatory effects and action mechanisms of magnolol and honokiol, several methods were employed. Through DPPH and SOD activity assays, we found that although both magnolol and honokiol have antioxidant activities, honokiol has relatively stronger antioxidant activities than magnolol {[for DPPH assay, % of DPPH bleaching of magnolol and honokiol (500 microM magnolol: 19.8%; 500 microM honokiol: 67.3%)]; [for SOD assay, SOD activity (200 microM magnolol: 53.4%; 200 microM honokiol: 64.3%)]}. Moreover, the production of interleukin-8 (IL-8) and tumor necrosis factor-alpha (TNF-alpha) induced by P. acnes in THP-1 cells, a human monocytic cell line, was reduced by magnolol and honokiol {[for IL-8 (10 microM magnolol: 42.7% inhibition; 10 microM honokiol: 51.4% inhibition)]; [for TNF-alpha (10 microM magnolol: 20.3% inhibition; 10 microM honokiol: 39.0% inhibition)]}. Cyclooxygenase-2 (Cox-2) activity was also suppressed by them [(15 microM magnolol: 45.8% inhibition), (15 microM honokiol: 66.3% inhibition)]. Using a nuclear factor-kappaB (NF-kappaB) luciferase reporter assay system and Western analysis, we identified that magnolol and honokiol exert their anti-inflammatory effects by inhibiting the NF-kappaB element, which exists in Cox-2, IL-8, and TNF-alpha promoters [(15 microM magnolol: 44.8% inhibition), (15 microM honokiol: 42.3% inhibition)]. Of particular note is that magnolol and honokiol operate downstream of the MEKK-1 molecule. Together with their previously known antibacterial activity against P. acnes and based on these results, we suggest that magnolol and honokiol may be introduced as possible acne-mitigating agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.