An electrochemical immunosensor employs antibodies as capture and detection means to produce electrical charges for the quantitative analysis of target molecules. This sensor type can be utilized as a miniaturized device for the detection of point-of-care testing (POCT). Achieving high-performance analysis regarding sensitivity has been one of the key issues with developing this type of biosensor system. Many modern nanotechnology efforts allowed for the development of innovative electrochemical biosensors with high sensitivity by employing various nanomaterials that facilitate the electron transfer and carrying capacity of signal tracers in combination with surface modification and bioconjugation techniques. In this review, we introduce novel nanomaterials (e.g., carbon nanotube, graphene, indium tin oxide, nanowire and metallic nanoparticles) in order to construct a high-performance electrode. Also, we describe how to increase the number of signal tracers by employing nanomaterials as carriers and making the polymeric enzyme complex associated with redox cycling for signal amplification. The pros and cons of each method are considered throughout this review. We expect that these reviewed strategies for signal enhancement will be applied to the next versions of lateral-flow paper chromatography and microfluidic immunosensor, which are considered the most practical POCT biosensor platforms.
Lateral-flow enzyme immunochromatography coupled with an immunomagnetic step was developed for rapid detection of Listeria monocytogenes in food matrices. The target bacteria was first separated and concentrated by magnetic nanoparticles containing the enzyme and directly applied to the assay system to induce an antigen-antibody reaction without any additional steps. The color signals produced by an enzyme-substrate reaction at a specific site on the immunostrip were found to be directly proportional to the concentration of L. monocytogenes in the sample. The detection concept was demonstrated by performing an enzyme immunoassay on a microtiter well prior to applying it to the lateral-flow assay. Results of the chromatographic analysis yield a limit of detection of 95 and 97 ± 19.5 CFU/mL in buffer solution and 2 % milk sample, respectively. In addition to the high sensitivity, it was also possible to shorten the separation and detection time to within 2 h. The system also showed no cross-reactivity with other bacteria (e.g., Escherichia coli O157:H7, Salmonella typhimurium, and Salmonella enteritidis). The analytical procedure developed will enable us to not only utilize the assay in the field where fast screening for pathogenic agents is required but also as a preventive measure to contain disease outbreak.
Background Genome-wide aberrations of the classic epigenetic modification 5-methylcytosine (5mC), considered the hallmark of gene silencing, has been implicated to play a pivotal role in mediating carcinogenic transformation of healthy cells. Recently, three epigenetic marks derived from enzymatic oxidization of 5mC namely 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC), have been discovered in the mammalian genome. Growing evidence suggests that these novel bases possess unique regulatory functions and may play critical roles in carcinogenesis. Methods To provide a quantitative basis for these rare epigenetic marks, we have designed a biotin-avidin mediated Enzyme-based Immunoassay (EIA) and evaluated its performance in genomic DNA isolated from blood of patients diagnosed with metastatic forms of lung, pancreatic and bladder cancer, as well as healthy controls. The proposed EIA incorporates spatially optimized biotinylated antibody and a high degree of horseradish-peroxidase (HRP) labeled streptavidin, facilitating signal amplification and sensitive detection. Results We report that the percentages of 5mC, 5hmC and 5caC present in the genomic DNA of blood in healthy controls as 1.025 + 0.081, 0.023 + 0.006 and 0.001 + 0.0002 respectively. We observed a significant (p<0.05) decrease in the mean global percentage of 5hmC in blood of patients with malignant lung cancer (0.013 + 0.003 %) in comparison to healthy controls. Conclusion The precise biological roles of these epigenetic modifications in cancers are still unknown but in the past two years it has become evident that the global 5hmC content is drastically reduced in a variety of cancers. To the best of our knowledge, this is the first report of decreased 5hmC content in the blood of metastatic lung cancer patients and the clinical utility of this observation needs to be further validated in larger sample datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.