Controlling the electrical conductance and in particular the occurrence of quantum interference in single-molecule junctions through gating effects, has potential for the realization of highperformance functional molecular devices. In this work, we used an electrochemically-gated, mechanically-controllable break junction technique to tune the electronic behaviour of thiophene-based molecular junctions that show destructive quantum interference (DQI) features. By varying the voltage applied to the electrochemical gate at room temperature, we
Molecular assembly is crucial in functional molecular materials and devices. Among the molecular interactions that can form assemblies, stacking among π-conjugated molecular backbones plays an essential role in charge transport through organic materials and devices. The single-molecule junction technique allows for the application of an electric field of approximately 10 8 V/m to the nanoscale junctions and to investigate the electric field-induced assembly at the single-stacking level. Here, we demonstrate an electric field-induced stacking effect between two molecules using the scanning tunneling microscope break junction (STM-BJ) technique and we found an increase in the stacking probability with increasing intensity of the electric field. The combined density functional theory (DFT) calculations suggest that the molecules become more planar under the electric field, leading to the energetically preferred stacking configuration. Our study provides a new strategy for tuning molecular assembly by employing a strong electric field.
Based on unsupervised deep learning algorithms, an automatic data analysis method for single-molecule charge transport data is developed, which offers an opportunity to reveal more physical and chemical phenomena at the single-molecule level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.