ObjectiveTraumatic brain injury (TBI) is a leading cause of death and disability, which tends to have a worse clinical recovery if it occurs in plateau areas than in plain areas. To explore the underlying cause of this outcome preliminarily, this retrospective study was conducted to compare the clinical differences of patients with TBI in plateau and plain areas.MethodsIn this study, 32 patients with TBI in plateau areas (altitude ≥ 4,000 m) and 32 in plain areas (altitude ≤ 1,000 m) were recruited according to the inclusion and exclusion criteria from June 2020 to December 2021. The collected data and compared parameters include clinical features, head CT presentations and Marshall classifications, hematology profile, lipid profile, coagulation profile, and multiorgan (cardiac, liver, renal) function within 24 h of hospital admission, as well as the treatment method and final outcome.ResultsThere were no obvious differences in demographic characteristics, including gender, age, height, and weight, between patients with TBI in plateau and plain areas (all P > 0.05). Compared to patients with TBI in plain areas, the time before hospital admission was longer, heartbeat was slower, systolic blood pressure (SBP) was lower, and hospital stays were longer in patients with TBI in plateau areas (all P < 0.05). More importantly, elevated red blood cells (RBCs) count and hemoglobin (HGB) level, enhanced coagulation function, and higher rates of multiorgan (cardiac, liver, and renal) injury were found in patients with TBI in plateau areas (all P < 0.05).ConclusionPatients with TBI in plateau areas presented with altered clinical characteristics, enhanced coagulation function, and aggravated predisposition toward multiorgan (cardiac, liver, and renal) injury, compared to patients with TBI in plain areas. Future prospective studies are needed to further elucidate the influences of high altitude on the disease course of TBI.
Objective: Myocardial injury is a severe complication in population exposed to high altitude. As a new biomarker for inflammatory response, neutrophil to lymphocyte ratio (NLR) has been widely used to predict the prognosis of various diseases. In this study, we intend to explore the risk factors for myocardial injury at high altitude and examine the relationship between NLR level and development of myocardial injury.Methods: Consecutive patients admitted to a secondary general hospital at high altitude from June 2019 to May 2020 were selected into this retrospective study. Clinical and biochemical data were collected. According to the results of lactate dehydrogenase (LDH), creatine kinase (CK), creatine kinase isoenzymes (CK-MB), and aspartate amino transferase (AST), patients were divided into myocardial injury group and normal group.Results: A total of 476 patients were enrolled in this study. Myocardial injury occurred in 158 patients (33.2%). We found that altitude, NLR, hemoglobin, total bilirubin, total cholesterol, and lipoprotein A in myocardial injury group were significantly higher than that in normal group (P < 0.05), while platelet count in myocardial injury group was significantly lower than that in normal group (P < 0.05). Logistic multivariate regression analysis revealed that there was an independent relationship between myocardial injury and smoke, NLR, hemoglobin (P < 0.05). By using Spearman correlation analysis, NLR was proved to have a significant positive correlation with LDH, CK, and CK-MB (P < 0.05) instead of AST. A receiver operating characteristic (ROC) curve was drawn to demonstrate that NLR could significantly predict the occurrence of myocardial injury with an area under the curve (AUC) of 0.594 (95% CI: 0.537–0.650, P < 0.05), and the level of 2.967 (sensitivity = 38.0%, specificity = 83.6%) was optimal cutoff value.Conclusion: The incidence of myocardial injury is high in population at high altitude. Smoke, hemoglobin, and NLR are independent factors related to myocardial injury. As a convenient and efficient marker, NLR is found to be closely associated with myocardial enzymes and have a predict role in the occurrence of myocardial injury. This study will provide a theoretical basis on NLR for the early diagnosis of myocardial injury at high altitude.
Objective: Cerebral venous sinus thrombosis (CVST) is believed to be associated with high-altitude exposure and has worse clinical prognosis in plateau areas than in plain areas, although this needs to be further verified. This retrospective study aims to compare the clinical differences of patients with CVST in plateau and plain areas and further ascertain the role of high-altitude exposure in the etiology of aggravating predisposition toward CVST.Methods: Twenty-four symptomatic CVST patients occurring at plateau areas (altitude ≥ 4000 m), in corresponding with 24 CVST patients occurring at plain areas (altitude ≤ 1000 m), were recruited according to the inclusion and exclusion criteria from June 2020 to December 2021. The collected data and compared parameters include clinical features, neuroimaging findings, hematology profile, lipid profile, and coagulation profile within 24 h of hospital admission, as well as the treatment method and final outcome.Results: There were no obvious differences of demographic characteristics, including gender, age, height, and weight between patients with CVST in plateau and plain areas, as well as medical history, neuroimaging findings, treatment protocols, and clinical outcome (all p > .05). Compared to patients with CVST at plain areas, time before hospital admission was longer and heartbeat was slower in patients with CVST at plateau areas (all p < .05). More importantly, elevated red blood cells counts, hemoglobin level, and altered coagulation function were found in patients with CVST at plateau areas (all p < .05). Conclusion:CVST patients in plateau areas presented with altered clinical characteristics, altered coagulation function, and aggravated predisposition toward venous thromboembolism compared with CVST patients in plain areas. Future prospective studies will be needed to further elucidate the influences of a high altitude on the pathogenesis of CVST.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.