Silicon does not emit light efficiently, therefore the integration of other light-emitting materials is highly demanded for silicon photonic integrated circuits. A number of integration approaches have been extensively explored in the past decade. Here, the most recent progress in this field is reviewed, covering the integration approaches of III-V-to-silicon bonding, transfer printing, epitaxial growth and the use of colloidal quantum dots. The basic approaches to create waveguide-coupled on-chip light sources for different application scenarios are discussed, both for silicon and silicon nitride based waveguides. A selection of recent representative device demonstrations is presented, including high speed DFB lasers, ultra-dense comb lasers, short (850nm) and long (2.3μm) wavelength lasers, wide-band LEDs, monolithic O-band lasers and micro-disk lasers operating in the visible. The challenges and opportunities of these approaches are discussed.
Hybrid silicon nitride (SiN)-quantum-dot (QD) microlasers coupled to a passive SiN output waveguide with a 7 µm diameter and a record-low threshold density of 27 µJ cm are demonstrated. A new design and processing scheme offers long-term stability and facilitates in-depth QD material and device characterization, thereby opening new paths for optical communication, sensing, and on-chip cavity quantum optics based on colloidal QDs.
In this work, poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4,7-di-2-thienyl-5,6-bis(dodecyloxy)-2,1,3-benzothiadiazole)] (PCDTBT12) was synthesized as the polymer donor for photovoltaic application. PCDTBT12 possesses a band gap of 1.99 eV, a low-lying HOMO of −5.6 eV, and good hole mobility up to 4.1 × 10 −3 cm 2 V −1 s −1 . With ZnO as the interlayer on an ITO cathode, a PCDTBT12-based inverted solar cell showed a high open-circuit voltage of 0.98 V and a good power conversion efficiency (PCE) of 5.53%, suggesting that PCDTBT12 would be a promising donor material in the fabrication of a subcell for shorter wavelength absorption in a tandem solar cell. Using PC-P, a homopolymer of 2,7-carbazole with hydrophilic phosphonate side chains, as an interlayer polymer on the ITO cathode could further elevate the efficiency to 6.04% because of increased current (higher efficiency of 6.2% was achieved for a smaller cell area of 0.045 cm 2 ). The efficiencies are the highest ones so far reported for an inverted solar cell with an organic cathode interlayer. It was proposed that the hydrophilic side chains of PC-P supplied a subgap state for electron transport. The two devices showed comparable air stability, and retained over 96% of their initial PCEs after storage in air for more than 1 month. Therefore, a hydrophilic conjugated polymer as the cathode interlayer, already shown in outstanding cathode modifications in conventional polymer solar cells, will play an important role in the future development of high efficiency and air-stable inverted solar cells.
Using an optimized lift-off process we develop a technique for both nanoscale and single-dot patterning of colloidal quantum dot films, demonstrating feature sizes down to ∼30 nm for uniform films and a yield of 40% for single-dot positioning, which is in good agreement with a newly developed theoretical model. While first of all presenting a unique tool for studying physics of single quantum dots, the process also provides a pathway toward practical quantum dotbased optoelectronic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.