Suture is an important part of surgery, and wounds closing after surgery remains a challenge for postoperative care. Currently, silk, linen fiber, and cotton are available in the market as non-absorbable suture biomaterials. So, there is an urgent need to develop a novel suture with advantageous characteristics compared to the ones available on the market. In present study, a series of ultra-high molecular weight chitosan with different DD and MV were prepared from squid cartilage by alkaline treatment and ultrasonic degradation. The corresponding chitosan monofilaments were prepared by a wet spinning process and were characterized as sutures. The effects of the DD and MV of chitosan on the properties of its monofilament were studied, including surface morphology, mechanical property, swelling ratio, ash content, in vitro enzymatic degradation, and in vitro cytotoxicity. According to the results, AS-85 was chosen to be the best suitable as an absorbable surgical suture, which was spun from squid cartilage chitosan with DD~85% and MV~1.2 × 106. The outcome of the present study might derive tremendous possibilities for the utilization of squid cartilage β-chitin for biomedical applications.
Bone scaffolds based on multi-components are the leading trend to address the multifaceted prerequisites to repair various bone defects. Chitosan is the most useable biopolymer, having excellent biological applications. Therefore, in the present study, the chitosan microsphere was prepared by the ion–gel method; transforming growth factor β (TGF-β1) and bone morphogenetic protein 2 (BMP-2) were loaded onto it and then combined with alginate/hyaluronic acid/collagen (Alg/HA/ICol) to construct a jawbones scaffold. The Alg/HA/ICol scaffolds were characterized by FTIR and SEM, and the water content, porosity, tensile properties, biocompatibility, and osteogenic-induced differentiation ability of the Alg/HA/ICol jawbones scaffolds were studied. The results indicate that a three-dimensional porous jawbone scaffold was successfully constructed having 100–250 μm of pore size and >90% of porosity without cytotoxicity against adipose-derived stem cells (ADSCs). Its ALP quantification, osteocalcin expression, and Von Kossamineralized nodule staining was higher than the control group. The jawbones scaffold constructed by TGF-β1 and BMP-2 loaded chitosan microsphere combining with Alg/HA/ICol has potential biomedical application in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.