Background: Previous studies from our group showed that low-intensity sonodynamic therapy (SDT) has protective effects on atherosclerosis (AS). However, because the intensity of ultrasound passing through tissue is attenuated, the consequences of very low-intensity SDT, referred to as non-lethal SDT (NL-SDT), on atherosclerotic plaques are unclear. The aim of this study was to determine whether NL-SDT affects atherosclerotic plaques and to elucidate the possible underlying mechanisms. Methods: An AS model was established using ApoE-/- mice fed a western diet. En face Oil Red O staining was used to measure atherosclerotic plaque size. Hematoxylin and eosin staining and immunohistochemical staining were used to observe plaque morphology and assess the location of macrophages and heme oxygenase 1 (HO-1). HO-1 mRNA and protein levels in AS plaques were evaluated by real-time PCR and western blotting. Human THP-1 cells and mouse peritoneal macrophages were used in this study. Western blotting was used to investigate the expression of cellular proteins after NL-SDT. Macrophage apoptosis was evaluated by TUNEL assays and flow cytometry with Annexin V/PI double staining. Intracellular reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were measured with 2′-7′-dichlorofluorescein diacetate (DCFH-DA) and 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethyl benzimidazolyl carbocyanine iodide (JC-1) staining, respectively. Results: NL-SDT significantly inhibited AS progression and reduced the necrotic core area. NL-SDT induced HO-1 expression in lesional macrophages and in cultured macrophages. NL-SDT activated the protein kinase B (AKT) and extracellular signal-related protein kinase (ERK) pathways and the transcription factor NF-E2-related factor 2 (Nrf2).NL-SDT significantly reduced oxidized LDL (ox-LDL)-induced macrophage MMP collapse, ROS production and cell apoptosis. Zinc protoporphyrin (ZnPP), a HO-1-specific inhibitor, reversed the protective effects of NL-SDT. Conclusion: NL-SDT inhibits atherosclerotic plaque progression and increases plaque stability. In vitro, NL-SDT has a protective effect on ox-LDL-induced macrophage impairment via HO-1.
Intraplaque hemorrhage (IPH) plays a major role in the aggressive progression of vulnerable plaque, leading to acute cardiovascular events. We previously demonstrated that sonodynamic therapy (SDT) inhibits atherosclerotic plaque progression. In this study, we investigated whether SDT could also be applied to treat more advanced hemorrhagic plaque and addressed the underlying mechanism. SDT decreased atherosclerotic burden, positively altered atherosclerotic lesion composition, and alleviated iron retention in rabbit hemorrhagic plaques. Furthermore, SDT reduced iron retention by stimulating ferroportin 1 (Fpn1) expression in apolipoprotein E (ApoE) −/− mouse plaques with high susceptibility to IPH. Subsequently, SDT inhibited iron-overload-induced foam-cell formation and pro-inflammatory cytokines secretion in vitro. Moreover, SDT reduced levels of the labile iron pool and ferritin expression via the reactive oxygen species (ROS)-nuclear factor erythroid 2-related factor 2 (Nrf2)-FPN1 pathway. SDT exerted therapeutic effects on hemorrhagic plaques and reduced iron retention via the ROS-Nrf2-FPN1 pathway in macrophages, thereby suggesting that it is a potential translational strategy for patients with advanced atherosclerosis in clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.