Surface coimmobilization modifications of blood-contacting devices with both antithrombogenic moieties and endothelium-inducing biomolecules may create a synergistic effect to improve their performance. However, it is difficult to perform covalent dual-functionalization with both biomolecules on the surface of normally used synthetic polymeric substrates. Herein, we developed and characterized an orthogonally functionalizable polymer, biodegradable elastic poly(ester urethane)urea with disulfide and amino groups (PUSN), which was further fabricated into electropun fibrous scaffolds and surface modified with heparin and endothelial progenitor cells (EPC) recruiting peptide (TPS). The modification effects were assessed through platelet adhesion, EPC, and HUVEC proliferation. Results showed the dual modified PUSN scaffolds demonstrated a synergistic effect of reduced platelet deposition and improved EPC proliferation in vitro study, and demonstrated their potential application in small diameter vascular regeneration.
Cardiovascular diseases have become a major threat to human health. The adhesion formation is an inevitable pathophysiological event after cardiac surgery. We have previously shown that gelatin/polycaprolactone (GT/PCL, mass ratio 50:50) electrospun nanofibrous membranes have high potential in preventing postoperative cardiac adhesion, but the effect of GT:PCL composition on anti-adhesion efficacy was not investigated. Herein, nanofibrous membranes with different GT:PCL mass ratios of 0:100, 30:70, 50:50, and 70:30 were prepared via electrospinning. The 70:30 membrane failed to prevent postoperative cardiac adhesion, overly high GT contents significantly deteriorated the mechanical properties, which complicated the suturing during surgery and hardly maintained the structural integrity after implantation. Unexpectedly, the 0:100 membrane (no gelatin contained) could not effectively prevent either, since its large pore size allowed the penetration of numerous inflammatory cells to elicit a severe inflammatory response. Only the GT:PCL 50:50 membrane exhibited excellent mechanical properties, good biocompatibility and effective anti-cell penetration ability, which could serve as a physical barrier to prevent postoperative cardiac adhesion and might be suitable for other biomedical applications such as wound healing, guided tissue or bone regeneration.
To explore the positional relationship between the pulmonary venous confluence-venous vein (PVC-VV) and both the atria in infracardiac total anomalous pulmonary venous connection (iTAPVC), using two-dimensional (2D) computerized tomography (CT) reconstruction. Through the 2D reconstruction of enhanced cardiac CT images of patients with iTAPVC, the projection of PVC-VV on coronal axial images was acquired and its location on the bilateral atrial splice was analyzed. Sagittal axial reconstruction was used to identify which atrium had a precise anterior-posterior positional relationship with PVC-VV. The type of iTAPVC, where the projection of PVC-VV was lying on the left atrium, and the left atrium had a precise anterior-posterior positional relationship with PVC-VV, was classified as the left atrial type. If the projection of PVC-VV was lying on the right atrium and the right atrium had a precise anterior-posterior positional relationship with PVC-VV, it was classified as the right atrial type. Finally, if the projection of PVC-VV was lying in the middle of the bilateral atria, and both the atria had precise anterior-posterior positional relationship with PVC-VV, it was referred to as the bilateral atrial type. Upon analysis of the 22 enhanced cardiac CT images, 6 were the left atrial type (27.27 %), 9 were right atrial type (40.91 %), while 7 were of the bilateral atrial type (31.82 %). The positional relationship between PVC-VV and the bilateral atria are variable, and iTAPVC classification using 2D CT reconstruction is an invaluable tool in designing the surgical approaches in iTAPVC.
ObjectiveCoronary artery fistula, defined as communication between a coronary artery and a great vessel or a cardiac chamber, is a relatively rare anomaly with an estimated incidence of 0.002% in the general population. It could be combined with a giant coronary artery aneurysm, with an incidence of 5.9% of the total incidence rate of CAF in the general population. The pathogenesis of these two combined anomalies is not clear, and we aimed to detect whether genetic abnormalities underlie the pathogenesis of these rarely combined anomalies.Materials and methodsA 6-year-old patient with a diagnosis of the right coronary artery to right ventricle fistula combined with a giant right coronary artery aneurysm and patent ductus arteriosus underwent a surgical repair at our center. The diagnosis was confirmed by echocardiography, CT, and surgery. DNA was extracted from the peripheral venous blood samples of the patient and his mother after informed consent was obtained. Hematoxylin and Eosin (HE) and Alizarin red staining were performed on the excised coronary artery aneurysm. Exome sequencing and in silico analyses were performed to detect detrimental genetic variants.ResultsNo obvious abnormalities were found in the excised coronary artery aneurysm. A heterozygous truncated variant (NM_144573: c.G298T; p.G100X) in the NEXN gene and a missense variant (NM_001171: c.G1312A; p.V438M) in the ABCC6 gene were carried by the patient but not by his mother.ConclusionThe NEXN-truncated variant, NEXN-G100X, is associated with the development of coronary arteries and congenital coronary artery anomalies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.