Summary
A series of numerical simulations were conducted in order to investigate the characteristics of smoke back‐layering and critical ventilation in the road tunnel at high altitude with reduced ambient atmospheric pressures. The results indicated that the smoke back‐layering length decreases with the reduction of ambient pressure. Meanwhile, the dimensionless critical longitudinal ventilation velocity decreases with one‐third power of the factor of ambient pressure at high altitude. By modifying the traditional dimensionless fire heat release rate with ambient pressure, new models were deduced to predict the smoke back‐layering length and critical ventilation velocity in the road tunnel at high altitude.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.