Dendritic cells (DCs)-based cancer immunotherapy has been used various strategies to inhibit immune suppressive mechanisms. CD25 antibodies and cyclophosphamide are well-studied immunomodulators through inhibition of regulatory T cells (Treg) and a blockade the immune-checkpoint molecule, cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) was recently targeted for immunomodulation. We used anti-CTLA-4 antibody, which is known to induce effective antitumor immunity by facilitating tumor-specific T-cell activation and suppressing Treg cells, as useful immunomodulator to provide a potentiating effect in the intratumoral injection of immature DCs (iDCs) into the irradiated tumor (IR/iDC). Ionizing radiation (IR) was applied at a dose of 10 Gy to the tumor on the right thigh of mice. Then, iDCs were intratumorally injected into the irradiated tumor. Anti-CTLA-4 antibody (100 µg/mouse) was administered intraperitoneally to mice on the same day with every iDCs injection. The growth of distant tumors was inhibited by IR/iDC and this effect was significantly augmented by combination treatment of anti-CTLA-4 antibody. Furthermore, the survival rate of tumor-bearing mice improved more by the combination treatment of anti-CTLA-4 antibody and IR/iDC compared with other groups. It was related to the increased tumor-specific interferon-γ-secreting T cells and CTL activity. Therefore, our results demonstrated that immunomodulator such as anti-CTLA-4 antibody enhances antitumor immunity of intratumoral injection of iDCs into irradiated tumor and suggested a new strategy to get more clinical benefits for cancer treatment.
Cordyceps militaris (C. militaris) and its main functional component, cordycepin, has been shown to possess a number of pharmacological activities including immunological stimulation and antitumor effects. However, the pharmacological mechanisms of C. militaris on tumor immunity underlying its antitumor effect have yet to be elucidated. In the present study, we evaluated the antitumor and immunomodulatory effects of C. militaris on FM3A tumor-bearing C3H/He mice, comparing wild-type C. militaris and cordycepin-enriched C. militaris (JLM 0636). The concentration of cordycepin produced by crossbred JLM 0636 was 7.42 mg/g dry weight, which was 7-fold higher than that of wild-type C. militaris. Dietary administration of C. militaris revealed retardation of tumor growth as well as elongation of survival rates of tumor-bearing mice. This effect was more pronounced in JLM 0636. There was a cordycepin-dependent decrease in IL-2 and TGF-β secretion and an increase in IL-4 secretion without changes in the proliferative responses of concanavalin A-stimulated lymphocytes, which suggested that C. militaris feeding might induce changes in the subpopulations of tumor-derived T lymphocytes. CD4+CD25+ cell population was significantly reduced in the total splenocytes from JLM 0636-administered mice, while CD4+ T cell population remained unchanged. FoxP3+-expressing Treg cells among CD4+CD25+ population showed a similar pattern. On the contrary, CD8+ T cells as well as the IFN-γ expressing CD8+ T cells from tumor-bearing mice were significantly upregulated by the administration of JLM 0636. These results demonstrated the suppressive role of JLM 0636 on the function of Treg cells contributing to tumor specific IFN-γ-expressing CD8+ T cell responses in tumor-bearing mice, which explained the underlying mechanism of the antitumor immunity of cordycepin. Therefore, cordycepin-enriched C. militaris is a promising candidate for an adjuvant in cancer immunotherapy.
Acquisition of tamoxifen resistance (TR) during anti-estrogenic therapy using tamoxifen is a major obstacle in the treatment of estrogen receptor (ER)-positive breast cancer. As a biguanide derivative, metformin is commonly used to treat type II diabetes. It has recently emerged as a potential anticancer agent. The objective of the present study was to investigate the anticancer activity of metformin in relation to ERα expression and its signaling pathway in ERα-positive MCF-7 and MDA-MB-361 breast cancer cells as well as TR MCF-7 breast cancer cells. Metformin inhibited both protein and mRNA levels of ERα in the presence or absence of estrogen (E2) in the MCF-7, TR MCF-7 and MDA-MB-361 cells. Metformin repressed E2-inducible estrogen response element (ERE) luciferase activity, protein levels and mRNA levels of E2/ERα-regulated genes [including c-Myc, cyclin D1, progesterone receptor (PR) and pS2] to a greater degree than tamoxifen, resulting in inhibition of cell proliferation of MCF-7, TR MCF-7 and MDA-MB-361 cells. Collectively, our results suggest that one of the anticancer mechanisms of metformin could be attributable to the repression of expression and transcriptional activity of ERα. Metformin may be a good therapeutic agent for treating ERα-positive breast cancer by inhibiting the expression and function of ERα. In addition, metformin may be useful to treat tamoxifen-resistant breast cancer.
Resveratrol (3,4′,5 tri-hydroxystilbene), a natural plant polyphenol, has gained interest as a non-toxic chemopreventive agent capable of inducing tumor cell death in a variety of cancer types. Several studies were undertaken to obtain synthetic analogues of resveratrol with potent anticancer activity. The aim of the present study was to investigate the effect of HS-1793 as a new resveratrol analog on apoptosis via the mitochondrial pathway in murine breast cancer cells. A pharmacological dose (1.3–20 μM) of HS-1793 exerted a cytotoxic effect on murine breast cancer cells resulting in apoptosis. HS-1793-mediated cytotoxicity in FM3A cells by several apoptotic events including mitochondrial cytochrome c release, activation of caspase-3 and PARP occurred. In addition, HS-1793 induced collapse of ΔΨm and enhanced AIF and Endo G release from mitochondria while undergoing apoptosis. These results demonstrate that the cytotoxicity by HS-1793 in FM3A cells can mainly be attributed to apoptosis via a mitochondrial pathway by caspase activation or contributions of AIF and Endo G.
PurposeBreast cancer has a high prevalence in Korea. To achieve personalized therapy for breast cancer, long-term follow-up specimens are needed for next-generation sequencing (NGS) and multigene analysis. Formalin-fixed paraffin-embedded (FFPE) samples are easier to store than fresh frozen (FF) samples. The objective of this study was to optimize RNA extraction from FFPE blocks for NGS.MethodsRNA quality from FF and FFPE tissues (n=5), expected RNA amount per unit area, the relationship between archiving time and quantity/quality of FFPE-extracted RNA (n=14), differences in quantitative real-time polymerase chain reaction (qRT-PCR) and NGS results, and comparisons of both techniques with tissue processing at different institutions (n=96) were determined in this study.ResultsThe quality of RNA did not show any statistically significant difference between paired FF and FFPE specimens (p=0.49). Analysis of tumor cellularity gave an expected RNA amount of 33.25 ng/mm2. Archiving time affected RNA quality, showing a negative correlation with RNA integrity number and a positive correlation with threshold cycle. However, RNA from samples as old as 10 years showed a 100% success rate in qRT-PCR using short primers, showing that the effect of archiving time can be overcome by proper experiment design. NGS showed a higher success rate than qRT-PCR. Specimens from institution B (n=46), which were often stored in a refrigerator for more than 6 hours and fixed without slicing, showed lower success rates and worse results than specimens from the other institutes.ConclusionArchived FFPE tissues can be used to extract RNA for NGS if they are properly processed before fixation. The expected amount of RNA per unit size calculated in this study will be useful for other researchers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.