BackgroundGenes, RNAs, and proteins play important roles during germline development. However, the functions of non-coding RNAs (ncRNAs) on germline development remain unclear in avian species. Recent high-throughput techniques have identified several classes of ncRNAs, including micro RNAs (miRNAs), small-interfering RNAs (siRNAs), and PIWI-interacting RNAs (piRNAs). These ncRNAs are functionally important in the genome, however, the identification and annotation of ncRNAs in a genome is challenging. The aim of this study was to identify different types of small ncRNAs particularly piRNAs, and the role of piRNA pathway genes in the protection of chicken primordial germ cells (PGCs).ResultsAt first, we performed next-generation sequencing to identify ncRNAs in chicken PGCs, and we performed ab initio predictive analysis to identify putative piRNAs in PGCs. Then, we examined the expression of three repetitive sequence-linked piRNAs and 14 genic-transcript-linked piRNAs along with their linked genes using real-time PCR. All piRNAs and their linked genes were highly expressed in PGCs. Subsequently, we knocked down two known piRNA pathway genes of chicken, PIWI-like protein 1 (CIWI) and 2 (CILI), in PGCs using siRNAs. After knockdown of CIWI and CILI, we examined their effects on the expression of six putative piRNA-linked genes and DNA double-strand breakage in PGCs. The knockdown of CIWI and CILI upregulated chicken repetitive 1 (CR1) element and RAP2B, a member of RAS oncogene family, and increased DNA double-strand breakage in PGCs.ConclusionsOur results increase the understanding of PGC-expressed piRNAs and the role of piRNA pathway genes in the protection of germ cells.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-15-757) contains supplementary material, which is available to authorized users.
The P-element-induced wimpy testis (PIWI) protein, which associates with small non-coding RNAs, is responsible for maintaining the integrity of germ cells and stem cells. Thus, transcriptional regulation of PIWI is critical for its effective functional modulation. In this study, we identified the promoter region of the PIWI homolog in chicken (CIWI), and investigated the transcriptional regulatory elements that control expression of CIWI in chicken primordial germ cells (PGCs). We constructed a vector that included the enhanced green fluorescent protein (eGFP) gene controlled by the 4-kb CIWI promoter. The vector was expressed in chicken PGCs, but not in chicken embryonic fibroblasts. Based on promoter deletion and fragmentation assays, we found that a 252-bp fragment of the CIWI promoter (-577 to -326 bp) was crucial for CIWI expression in PGCs. A CCAAT transcriptional regulatory element (-498 to -494 bp) was detected in the proximal region from the transcription initiation site of CIWI, and mutational analysis confirmed that this element regulates transcriptional initiation in chicken PGCs. Interestingly, the regions flanking the CCAAT element, which are positioned differently in HIWI (human), Miwi (mouse), and CIWI orthologs, were highly conserved. In addition, we predicted that specificity protein 1 (SP1) motifs modulate the transcriptional initiation of CIWI by binding to the 5'-flanking regions of the CCAAT box. Overall, 252 bp of the CIWI promoter possessing the transcriptional regulatory element CCAAT is crucial for regulating CIWI gene expression in chicken PGCs. This promoter may be applicable for the regulation of CIWI expression during germ-cell development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.