DJ-1 has been reported as a gene linked to early onset familial Parkinson's disease, and is functionally involved in transcriptional regulation and oxidative stress-induced cell death. To understand the role of DJ-1 in cellular stress, this study investigated DJ-1's effect on stress-activated protein kinase signaling and H(2)O(2)-induced activation of apoptosis signal-regulating kinase 1 (ASK1). According to the results, the overexpression of DJ-1 inhibited H(2)O(2)-induced activation of ASK1 as well as the activation of downstream kinases in the p38 mitogen-activated protein kinase (MAPK) signaling cascade. The results of both in vivo binding and kinase studies have revealed that ASK1 is the direct target of DJ-1, whereas it has shown no effect on either MKK3 or p38. DJ-1 blocked both the homo-oligomerization of ASK1 and inhibited ASK1 activity. Taken together, our data strongly suggest that DJ-1, by directly inhibiting ASK1, may act as a negative regulator in ASK1 signaling cascades.
The metazoan Wee1-like kinases Wee1 and Myt1 regulate the essential mitotic regulator Cdk1 by inhibitory phosphorylation. This regulatory mechanism, which prevents Cdk1 from triggering premature mitotic events, is also induced during the DNA damage response and used to coordinate cell proliferation with crucial developmental events. Despite the previously demonstrated role for Myt1 regulation of Cdk1 during meiosis, relatively little is known of how Myt1 functions at other developmental stages. To address this issue, we have undertaken a functional analysis of Drosophila Myt1 that has revealed novel developmental roles for this conserved cell cycle regulator during gametogenesis. Notably, more proliferating cells were observed in myt1 mutant testes and ovaries than controls. This can partly be attributed to ectopic division of germline-associated somatic cells in myt1 mutants, suggesting that Myt1 serves a role in regulating exit from the cell cycle. Moreover, mitotic index measurements suggested that germline stem cells proliferate more rapidly, in myt1 mutant females. In addition, male myt1 germline cells occasionally undergo an extra mitotic division, resulting in meiotic cysts with twice the normal numbers of cells. Based on these observations, we propose that Myt1 serves unique Cdk1 regulatory functions required for efficient coupling of cell differentiation with cell cycle progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.