Shape memory alloys have been actively studied in various fields in an attempt to utilize their high energy density. In particular, shape memory alloy wire-embedded composites can be used as load-bearing smart actuators without any additional manipulation, in which they act like a hinge joint. A shape memory alloy wire-embedded composite is able to generate various deformation behaviors via the combination of its shape memory alloy and matrix materials. Accordingly, a study of the various design parameters of shape memory alloy wire-embedded composites is required to facilitate the practical application of smart structures. In this research, a numerical simulation of a shape memory alloy wire-embedded composite is used to investigate the deformation behavior of a composite panel as a function of the composite width per shape memory alloy wire, composite thickness, and the eccentricity of the shape memory alloy wire. A curved morphing composite structure is fabricated to confirm the results of the numerical simulation. The deformation of the shape memory alloy wire-embedded composite panel is determined by measuring its radius of curvature. The simulated deformation behaviors are verified with the experimental results. In addition, an analysis of the deformation and internal stress of the composites is carried out. It can be used to obtain guidelines for the mechanical design of shape memory alloy wire-embedded composite panels.
We synthesized ultra-thin Ag nanowire (Ag NWs) with sub-15 nm diameters and aspect ratios of 1000 through a water-based high-pressure hydrothermal method in the presence of a tetrabutylammonium dichlorobromide organic salt and glucose reducing agent. In the crystal growth stage, the diameter of the NWs could be controlled by adjusting the pressure, and 15-nm diameter wires were obtained at a pressure of 190 psi. These 2D conductive Ag NW network films showed an excellent optical performance with low haze value of ≤1.0% and 94.5% transmittance at a low sheet resistance of 20 Ω/sq.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.