Autophagy and apoptosis are important processes that control cellular homeostasis and have been highlighted as promising targets for novel cancer therapies. Here, we identified convallatoxin (CNT), isolated from Antiaris toxicaria, as a dual inducer of autophagy and apoptosis. CNT exerts cytotoxic effects on a number of cancer and normal cell lines and induces apoptosis by increasing caspase-3 and poly ADP ribose polymerase (PARP) cleavage. Moreover, dose- and time-dependent autophagic activity was detected in CNT-treated cells, and mammalian target of rapamycin (mTOR)/p70S6K signal pathway inhibition was observed. Notably, CNT inhibits human umbilical vein endothelial cell (HUVEC) growth and exerts anti-angiogenic activity in vitro and in vivo. Collectively, these results demonstrate that the naturally occurring compound, CNT, is a novel anti-angiogenic compound via dual inducing of autophagy and apoptosis.
Indatraline is an antidepressive agent and a non-selective monoamine transporter inhibitor that blocks the reuptake of neurotransmitters (dopamine, serotonin, and norepinephrine). In this study, we report that indatraline induces autophagy via the suppression of mTOR/S6 kinase signaling. Autophagy induction was examined by a cell-based high content screening system using LysoTracker, which was followed by monodansylcadaverine staining and transmission electron microscope observation. Indatraline increased the number of EGFP-LC3 cells expressing autophagosomes in the cytoplasm. Conversion of LC3 was further validated by immunoblotting. Indatraline induced autophagy by affecting the AMPK/mTOR/S6K signaling axis and had no influence on the PI3K/AKT/ERK signaling. Moreover, indatraline induced autophagy in smooth muscle cells (SMCs); further, it exhibited therapeutic potential for restenosis by inhibiting SMC accumulation in a rat restenosis model. These results provide new insights into the role of monoamine transporters in autophagy regulation and identify indatraline as a novel agent for inducing autophagy.
As a subunit of mitochondrial complex III, UQCRB plays an important role in complex III stability, electron transport, and cellular oxygen sensing. Herein, we report UQCRB function regarding angiogenesis in vivo with the zebrafish (Danio rerio). UQCRB knockdown inhibited angiogenesis in zebrafish leading to the suppression of VEGF expression. Moreover, the UQCRB-targeting small molecule terpestacin also inhibited angiogenesis and VEGF levels in zebrafish, supporting the role of UQCRB in angiogenesis. Collectively, UQCRB loss of function by either genetic and pharmacological means inhibited angiogenesis, indicating that UQCRB plays a key role in this process and can be a prognostic marker of angiogenesis- and mitochondria-related diseases.
Autophagy is the mass degradation system that removes long-lived proteins and malfunctioning organelles within the cell. Dysfunctional autophagic processes can cause various diseases such as cancer and neurodegenerative disorders, but the underlying mechanisms responsible for such events remain undefined. Small molecules that control autophagy could be powerful tools to reveal autophagy mechanisms, and to develop treatments for autophagy-related diseases including Alzheimer's disease, Parkinson's disease and various cancer types. This review discusses the small molecules that have been identified to control autophagy and how they can be used to understand signaling pathways important for autophagy in the context of chemical genomics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.