OBJECTIVE To assess the accuracy of transsphenoidal hypophysectomy using 3-D printed patient-specific guides (3D-PSGs) in small-breed dogs. ANIMALS Heads obtained from the cadavers of 19 small-breed dogs (ex vivo portion of study) and 3 healthy adult (3 to 4 years) purpose-bred Beagles with a median body weight of 9.2 kg. PROCEDURES In the ex vivo study, CT images of the cadavers were collected. The position, width, and length of the pituitary fossa and the pilot hole (insertion angle and place) were measured. Using PSGs, 19 pilot holes were made for the pituitary gland fossa, and CT was performed to assess the position accuracy. In the in vivo study, 3 surgical windows from the pilot holes were made using PSGs. Repeated CT and MRI were performed to evaluate the safeness and effectiveness of PSGs, followed by necropsy. RESULTS In the ex vivo study, the median (interquartile range) difference between the pre- and postoperative insertion angles was 2° (0° to 3.5°) and the median deviation of the pilot hole was 0.46 mm (0 to 1.58 mm). In the in vivo study, the surrounding structures were not damaged, and favorable outcomes were evident in terms of the shape, size, and position of the surgical window. CLINICAL RELEVANCE 3D-PSGs provided a safe and effective surgical window for transsphenoidal hypophysectomy. Our findings emphasized the applicability of PSGs in brain surgery, in terms of accuracy and effectiveness.
A 2-year-old castrated male Pomeranian dog was presented for regular follow-up after micro total hip replacement (mTHR) 16 months prior to presentation. Clinically, the dog did not show any noticeable lameness of the left hindlimb, except for external rotation during walking. However, radiographic findings, namely rotation and medialization of the acetabular cup with a periprosthetic lucent line and bone formation medial to the acetabulum, were interpreted as aseptic loosening of the acetabular component. Because the dog was incompatible with the conventional THR revision method owing to severe bone defects in the acetabulum, a patient-specific titanium acetabular cage prosthesis with biflanges and four cranial and one caudal screw hole was designed for revision surgery. A custom-made acetabular cage was prepared, and it had a 12-mm polyethylene cup fixed with polymethylmethacrylate bone cement and positioned in the acetabulum. After the custom-made acetabular cage was anchored to the pelvic bone with the five cortical screws, reduction of the prostheses was achieved smoothly. The dog showed almost normal limb function without external rotation of the left hindlimb 2 weeks postoperatively. Bone remodeling and stable implant position were noted on radiographic images 3 years after revision surgery, with no evidence of loosening. Based on the clinical outcomes, the use of a custom-made acetabular prosthesis can be an effective treatment option for revision arthroplasty in acetabula with severe bone loss and structural changes in small-breed dogs.
A 4-year-old, intact, female, Collie was presented with 5 month history of right hindlimb lameness. Lateral luxation of the superficial digital flexor tendon (SDFT) was diagnosed on the basis of the clinical, radiographic and ultrasonographic finding. Intraoperatively, shallow right calcaneal tuber was observed. Block recession calcaneoplasty with retinaculum repair using anchor screw were performed to manage SDFT luxation. Additionally, temporary restraining pin was placed on lateral aspect of the calcaneal tuber. The patient demonstrated mild lameness at 2 weeks postoperatively and improved to normal limb function at 12 weeks postoperatively. As the gold standard of surgical techniques for SDFT luxation has not yet been reported, block recession calcaneooplasty may be an alternative surgical option for patients with calcaneal morphologic abnormalities causing SDFT luxation.
Epineural neurorrhaphy is a standard nerve repair method, but it is rarely reported in veterinary literature. Epineural neurorrhaphy in canine sciatic nerve injury are described in this report. An 11-month-old, castrated male Maltese dog, presented with an one-month history of non-weight bearing lameness and knuckling of the right pelvic limb. The dog showed absence of superficial and deep pain perception on the dorsal and lateral surfaces below the stifle joint. The dog had undergone femoral head and neck osteotomy in the right pelvic limb one month prior to referral at a local hospital. Based on physical and neurological examinations, peripheral nerve injury of the right pelvic limb was suspected. Radiography showed irregular bony proliferation around the excised femoral neck. Magnetic resonance imaging revealed sciatic nerve injury with inconspicuous continuity at the greater trochanter level. A sciatic nerve neurotmesis was suspected and surgical repair was decided. During surgery, non-viable tissue of the sciatic nerve was debrided, and epineural neurorrhaphy was performed to bridge a large, 20-mm defect. The superficial and deep pain perception was progressively improved and restored at 3 weeks postoperatively, and the dog exhibited a gradual improvement in motor function. At 10 weeks postoperatively, the dog showed no neurological deficit including knuckling but the tarsal joint hyperextension did not improve due to ankylosis. The dog had undergone tarsal arthrodesis and exhibited almost normal limb function without any neurologic sequela until the last follow-up at 2.5 years postoperatively.
A two-year-old male Pomeranian dog was presented to a veterinary hospital due to the side effects of a surgical correction for patellar luxation. Stifle joint arthrodesis (SJA) was performed on the patient’s right leg using autologous bone-grafting techniques. The right femur and tibial joint were angled 120–130°, and an SJA plate was fixed on the front of the two bones. After performing joint fusion of the right limb, medial-patellar-luxation-(MPL)-corrective surgery was performed to cut the tibial tuberosity on the left leg, and the fixing force was increased using the figure-of-eight-tension-band-wiring technique. Results were recorded regarding the dog’s ability to walk and trot in the right hind limb; these results were evaluated for 27 days after surgery. It was difficult for the patient to walk because weight-bearing had not been carried out for 3 days after the surgery; short strides and partial weight bearing were possible 5 to 7 days after surgery. After 10 days, the patient was able to move while bearing weight with a slight disruption. With regard to trotting, the patient showed intermittent normal steps 5 to 7 days after surgery, but the disruption continued. After 14 days, trotting was possible, and it was observed that movement could be maintained during everyday activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.