The development of COVID-19 vaccines is critical in controlling global health issues under the COVID-19 pandemic. The subunit vaccines are the safest and most widely used vaccine platform and highly effective against a multitude of infectious diseases. An adjuvant is essential for subunit vaccines to enhance the magnitude and durability of immune responses. In this study, we determined whether a combination of toll-like receptor (TLR)1/2 and TLR3 agonists (L-pampo) can be a potent adjuvant for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) subunit vaccine. We measured a neutralizing antibody (nAb) and an angiotensin-converting enzyme 2 (ACE2) receptor-blocking antibody against SARS-CoV-2 receptor-binding domain (RBD). We also detected interferon-gamma (IFN-γ) production by using ELISPOT and ELISA assays. By employing a ferret model, we detected nAbs and IFN-γ producing cells and measured viral load in nasal wash after the challenge of SARS-CoV-2. We found that SARS-CoV-2 antigens with L-pampo stimulated robust humoral and cellular immune responses. The efficacy of L-pampo was higher than the other adjuvants. Furthermore, in the ferret model, SARS-CoV-2 antigens with L-pampo elicited nAb response and antigen-specific cellular immune response against SARS-CoV-2, resulting in substantially decreased viral load in their nasal wash. Our study suggests that SARS-CoV-2 antigens formulated with TLR agonists, L-pampo, can be a potent subunit vaccine to promote sufficient protective immunity against SARS-CoV-2.
BackgroundThe placenta is a reservoir enriched with growth factors, hormones, cytokines and minerals. While several beneficial effects of placenta extracts on wound healing, anti-aging and anti-inflammatory responses have been reported, relatively limited mechanistic exploration has been conducted to date. Here, we provide compelling evidence of anti-inflammatory and anti-oxidative activities of porcine placenta extracts (PPE) against contact dermatitis in vivo.MethodsA contact dermatitis mouse model was established by sensitizing the dorsal skin of BALB/c mice using the contact allergen, 2,4-dinitrochlorobenzene (DNCB), and molecular consequences of topical application of PPE were investigated. PPEs were pre-sterilized via γ-irradiation, which is a milder but more effective way of sterilizing biomolecules relative to the conventional autoclaving method.ResultsDNCB-induced skin lesions displayed clear contact dermatitis-like symptoms and topical application of PPE dramatically alleviated both local and systemic inflammatory responses. Inflammatory epidermal thickening was completely abrogated and allergen-specific serum IgE levels significantly reduced in the presence of PPE. Moreover, anti-oxidative activities of PPE were observed both in vitro and in vivo, which may lead to attenuation of inflammatory responses. Prolonged treatment with PPE strongly inhibited production of DNCB-induced reactive oxygen species (ROS) and subsequently prevented oxidative degradation of hyaluronic acid (HA), which triggers innate inflammatory responses.ConclusionOur findings supply valuable insights into the mechanisms underlying the anti-inflammatory effects of PPE and provide a functional basis for the clinical application of PPE in inflammatory diseases.Electronic supplementary materialThe online version of this article (10.1186/s12906-018-2396-1) contains supplementary material, which is available to authorized users.
To confirm that Korean Food and Drug Administration (KFDA) guidelines are applicable to test the efficacy of mosquito repellents, these guidelines were used to test the efficacy and complete protection times (CPTs) of three representative mosquito repellents: N,N-diethyl-3-methylbenzamide (DEET), citronella, and fennel oil. The repellency of citronella oil decreased over time, from 97.9% at 0 h to 71.4% at 1 h and 57.7% at 2 h, as did the repellency of fennel oil, from 88.6% at 0 h to 61.2% at 1 h and 47.4% at 2 h. In contrast, the repellency of DEET remained over 90% for 6 h. The CPT of DEET (360 min) was much longer than the CPTs of citronella (10.5 min) and fennel oil (8.4 min). These results did not differ significantly from previous findings, and hence confirm that the KFDA guidelines are applicable for testing the efficacy of mosquito repellents.
Previously, we developed a non-replicating recombinant baculovirus coated with human endogenous retrovirus envelope protein (AcHERV) for enhanced cellular delivery of human papillomavirus (HPV) 16L1 DNA. Here, we report the immunogenicity of an AcHERV-based multivalent HPV nanovaccine in which the L1 segments of HPV 16, 18, and 58 genes were inserted into a single baculovirus genome of AcHERV. To test whether gene expression levels were affected by the order of HPV L1 gene insertion, we compared the efficacy of bivalent AcHERV vaccines with the HPV 16L1 gene inserted ahead of the 18L1 gene (AcHERV-HP16/18L1) with that of AcHERV with the HPV 18L1 gene inserted ahead of the 16L1 gene (AcHERV-HP18/16L1). Regardless of the order, the bivalent AcHERV DNA vaccines retained the immunogenicity of monovalent AcHERV-HP16L1 and AcHERV-HP18L1 DNA vaccines. Moreover, the immunogenicity of bivalent AcHERV-HP16/18L1 was not significantly different from that of AcHERV-HP18/16L1. In challenge tests, both bivalent vaccines provided complete protection against HPV 16 and 18 pseudotype viruses. Extending these results, we found that a trivalent AcHERV nanovaccine encoding HPV 16L1, 18L1, and 58L1 genes (AcHERV-HP16/18/58L1) provided high levels of humoral and cellular immunogenicity against all three subtypes. Moreover, mice immunized with the trivalent AcHERV-based nanovaccine were protected from challenge with HPV 16, 18, and 58 pseudotype viruses. These results suggest that trivalent AcHERV-HPV16/18/58L1 could serve as a potential prophylactic baculoviral nanovaccine against concurrent infection with HPV 16, 18, and 58.
Influenza viruses cause respiratory diseases in humans and animals with high morbidity and mortality rates. Conventional anti-influenza drugs are reported to exert side effects and newly emerging viral strains tend to develop resistance to these commonly used agents. Fritillaria thunbergii (FT) is traditionally used as an expectorant for controlling airway inflammatory disorders. Here, we evaluated the therapeutic effects of FT extracts against influenza virus type A (H1N1) infection in vitro, in ovo , and in vivo. In the post-treatment assay, FT extracts showed high CC 50 (7,500 μg/ml), indicating low toxicity, and exerted moderate antiviral effects compared to oseltamivir (SI 50.6 vs. 222) in vitro. Antiviral activity tests in ovo revealed strong inhibitory effects of both FT extract and oseltamivir against H1N1 replication in embryonated eggs. Notably, at a treatment concentration of 150 mg/kg, only half the group administered oseltamivir survived whereas the FT group showed 100% survival, clearly demonstrating the low toxicity of FT extracts. Consistent with these findings, FT-administered mice showed a higher survival rate with lower body weight reduction relative to the oseltamivir group upon treatment 24 h after viral infection. Our collective results suggest that FT extracts exert antiviral effects against influenza H1N1 virus without inducing toxicity in vitro, in ovo or in vivo, thereby supporting the potential utility of FT extract as a novel candidate therapeutic drug or supplement against influenza.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.